FEAST FOR DIFFERENTIAL EIGENVALUE PROBLEMS

An operator analogue of the FEAST matrix eigensolver is developed to compute the discrete part of the spectrum of a differential operator in a region of interest in the complex plane. Unbounded search regions are handled with a novel rational filter for the right half-plane. If the differential oper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2020-01, Vol.58 (2), p.1239-1262
Hauptverfasser: Horning, Andrew, Townsend, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An operator analogue of the FEAST matrix eigensolver is developed to compute the discrete part of the spectrum of a differential operator in a region of interest in the complex plane. Unbounded search regions are handled with a novel rational filter for the right half-plane. If the differential operator is normal or self-adjoint, then the operator analogue preserves that structure and robustly computes eigenvalues to near machine precision accuracy. The algorithm is particularly adept at computing high-frequency modes of differential operators that possess self-adjoint structure with respect to weighted Hilbert spaces.
ISSN:0036-1429
1095-7170
DOI:10.1137/19M1238708