Insights into the Mechanism of Ethionamide Resistance in Mycobacterium tuberculosis through an in silico Structural Evaluation of EthA and Mutants Identified in Clinical Isolates

Mutation in the ethionamide (ETH) activating enzyme, EthA, is the main factor determining resistance to this drug, used to treat TB patients infected with MDR and XDRMycobacterium tuberculosisisolates. Many mutations in EthA of ETH resistant (ETH-R) isolates have been described but their roles in re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2020-05, Vol.10 (5), p.543, Article 543
Hauptverfasser: de Souza, Vinicius Carius, Antunes, Deborah, Santos, Lucianna H. S., Zabala Capriles Goliatt, Priscila Vanessa, Caffarena, Ernesto Raul, Ramos Guimaraes, Ana Carolina, Galvao, Teca Calcagno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 543
container_title Catalysts
container_volume 10
creator de Souza, Vinicius Carius
Antunes, Deborah
Santos, Lucianna H. S.
Zabala Capriles Goliatt, Priscila Vanessa
Caffarena, Ernesto Raul
Ramos Guimaraes, Ana Carolina
Galvao, Teca Calcagno
description Mutation in the ethionamide (ETH) activating enzyme, EthA, is the main factor determining resistance to this drug, used to treat TB patients infected with MDR and XDRMycobacterium tuberculosisisolates. Many mutations in EthA of ETH resistant (ETH-R) isolates have been described but their roles in resistance remain uncharacterized, partly because structural studies on the enzyme are lacking. Thus, we took a two-tier approach to evaluate two mutations (Y50C and T453I) found in ETH-R clinical isolates. First, we used a combination of comparative modeling, molecular docking, and molecular dynamics to build an EthA model in complex with ETH that has hallmark features of structurally characterized homologs. Second, we used free energy computational calculations for the reliable prediction of relative free energies between the wild type and mutant enzymes. The Delta Delta G values for Y50C and T453I mutant enzymes in complex with FADH(2)-NADP-ETH were 3.34 (+/-0.55) and 8.11 (+/-0.51) kcal/mol, respectively, compared to the wild type complex. The positive Delta Delta G values indicate that the wild type complex is more stable than the mutants, with the T453I complex being the least stable. These are the first results shedding light on the molecular basis of ETH resistance, namely reduced complex stability of mutant EthA.
doi_str_mv 10.3390/catal10050543
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000546007000088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_978f51a529aa461bb8ca86b1b18bf646</doaj_id><sourcerecordid>2404434418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-2bd1b00dc674e078b39255038a842b2cc6bdaa95529e430b76a1c66004812c1e3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhk1poSHJsXdBj8WtZMm2fAxm2xqyBPpxNiN5vNbilVJ9tORv9RdWzobQ3qqLxPDMMyPeonjD6HvOO_pBQ4SVUVrTWvAXxUVFW14KLsTLv96vi-sQjjSfjnHJ6ovi92CDOSwxEGOjI3FBske9gDXhRNxMdnExzsLJTEi-YDAhgtWYYbJ_0E6BjuhNOpGYFHqdVpeRbPEuHRYCdgODWY125Gv0ScfkYSW7n7AmiFn8NOImoxPZpyzPmwwT2mhmg9PW3q_GGp27huBWiBiuilczrAGvn-7L4vvH3bf-c3l792nob25LzVsay0pNTFE66aYVSFupeFfVNeUSpKhUpXWjJoCurqsOBaeqbYDppqFUSFZphvyyGM7eycFxvPfmBP5hdGDGx4LzhxF8NHrFsWvlXDPIKgDRMKWkBtkopphUcyOa7Hp7dt179yNhiOPRJW_z-mMlqNiyYTJT5ZnS3oXgcX6eyui4pTz-k3Lm3535X6jcHLTBnM1zT065Fvk_7Za33Ozy_-nexMeAepds5H8A97O-Bw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404434418</pqid></control><display><type>article</type><title>Insights into the Mechanism of Ethionamide Resistance in Mycobacterium tuberculosis through an in silico Structural Evaluation of EthA and Mutants Identified in Clinical Isolates</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>de Souza, Vinicius Carius ; Antunes, Deborah ; Santos, Lucianna H. S. ; Zabala Capriles Goliatt, Priscila Vanessa ; Caffarena, Ernesto Raul ; Ramos Guimaraes, Ana Carolina ; Galvao, Teca Calcagno</creator><creatorcontrib>de Souza, Vinicius Carius ; Antunes, Deborah ; Santos, Lucianna H. S. ; Zabala Capriles Goliatt, Priscila Vanessa ; Caffarena, Ernesto Raul ; Ramos Guimaraes, Ana Carolina ; Galvao, Teca Calcagno</creatorcontrib><description>Mutation in the ethionamide (ETH) activating enzyme, EthA, is the main factor determining resistance to this drug, used to treat TB patients infected with MDR and XDRMycobacterium tuberculosisisolates. Many mutations in EthA of ETH resistant (ETH-R) isolates have been described but their roles in resistance remain uncharacterized, partly because structural studies on the enzyme are lacking. Thus, we took a two-tier approach to evaluate two mutations (Y50C and T453I) found in ETH-R clinical isolates. First, we used a combination of comparative modeling, molecular docking, and molecular dynamics to build an EthA model in complex with ETH that has hallmark features of structurally characterized homologs. Second, we used free energy computational calculations for the reliable prediction of relative free energies between the wild type and mutant enzymes. The Delta Delta G values for Y50C and T453I mutant enzymes in complex with FADH(2)-NADP-ETH were 3.34 (+/-0.55) and 8.11 (+/-0.51) kcal/mol, respectively, compared to the wild type complex. The positive Delta Delta G values indicate that the wild type complex is more stable than the mutants, with the T453I complex being the least stable. These are the first results shedding light on the molecular basis of ETH resistance, namely reduced complex stability of mutant EthA.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal10050543</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Amino acids ; Binding sites ; BVMO ; Catalysis ; Catalysts ; Chemical reactions ; Chemistry ; Chemistry, Physical ; Drug resistance ; Enzymes ; EthA ; ethionamide resistance ; Free energy ; Homology ; Ligands ; Molecular docking ; Molecular dynamics ; Mutation ; Physical Sciences ; Resistance factors ; Science &amp; Technology ; Simulation ; thermodynamic integration ; Tuberculosis</subject><ispartof>Catalysts, 2020-05, Vol.10 (5), p.543, Article 543</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000546007000088</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c370t-2bd1b00dc674e078b39255038a842b2cc6bdaa95529e430b76a1c66004812c1e3</citedby><cites>FETCH-LOGICAL-c370t-2bd1b00dc674e078b39255038a842b2cc6bdaa95529e430b76a1c66004812c1e3</cites><orcidid>0000-0002-0031-6537 ; 0000-0002-8353-3034 ; 0000-0002-6910-0697 ; 0000-0002-2927-0800 ; 0000-0001-8075-3253 ; 0000-0003-1260-543X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,28255</link.rule.ids></links><search><creatorcontrib>de Souza, Vinicius Carius</creatorcontrib><creatorcontrib>Antunes, Deborah</creatorcontrib><creatorcontrib>Santos, Lucianna H. S.</creatorcontrib><creatorcontrib>Zabala Capriles Goliatt, Priscila Vanessa</creatorcontrib><creatorcontrib>Caffarena, Ernesto Raul</creatorcontrib><creatorcontrib>Ramos Guimaraes, Ana Carolina</creatorcontrib><creatorcontrib>Galvao, Teca Calcagno</creatorcontrib><title>Insights into the Mechanism of Ethionamide Resistance in Mycobacterium tuberculosis through an in silico Structural Evaluation of EthA and Mutants Identified in Clinical Isolates</title><title>Catalysts</title><addtitle>CATALYSTS</addtitle><description>Mutation in the ethionamide (ETH) activating enzyme, EthA, is the main factor determining resistance to this drug, used to treat TB patients infected with MDR and XDRMycobacterium tuberculosisisolates. Many mutations in EthA of ETH resistant (ETH-R) isolates have been described but their roles in resistance remain uncharacterized, partly because structural studies on the enzyme are lacking. Thus, we took a two-tier approach to evaluate two mutations (Y50C and T453I) found in ETH-R clinical isolates. First, we used a combination of comparative modeling, molecular docking, and molecular dynamics to build an EthA model in complex with ETH that has hallmark features of structurally characterized homologs. Second, we used free energy computational calculations for the reliable prediction of relative free energies between the wild type and mutant enzymes. The Delta Delta G values for Y50C and T453I mutant enzymes in complex with FADH(2)-NADP-ETH were 3.34 (+/-0.55) and 8.11 (+/-0.51) kcal/mol, respectively, compared to the wild type complex. The positive Delta Delta G values indicate that the wild type complex is more stable than the mutants, with the T453I complex being the least stable. These are the first results shedding light on the molecular basis of ETH resistance, namely reduced complex stability of mutant EthA.</description><subject>Amino acids</subject><subject>Binding sites</subject><subject>BVMO</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Drug resistance</subject><subject>Enzymes</subject><subject>EthA</subject><subject>ethionamide resistance</subject><subject>Free energy</subject><subject>Homology</subject><subject>Ligands</subject><subject>Molecular docking</subject><subject>Molecular dynamics</subject><subject>Mutation</subject><subject>Physical Sciences</subject><subject>Resistance factors</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>thermodynamic integration</subject><subject>Tuberculosis</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1r3DAQhk1poSHJsXdBj8WtZMm2fAxm2xqyBPpxNiN5vNbilVJ9tORv9RdWzobQ3qqLxPDMMyPeonjD6HvOO_pBQ4SVUVrTWvAXxUVFW14KLsTLv96vi-sQjjSfjnHJ6ovi92CDOSwxEGOjI3FBske9gDXhRNxMdnExzsLJTEi-YDAhgtWYYbJ_0E6BjuhNOpGYFHqdVpeRbPEuHRYCdgODWY125Gv0ScfkYSW7n7AmiFn8NOImoxPZpyzPmwwT2mhmg9PW3q_GGp27huBWiBiuilczrAGvn-7L4vvH3bf-c3l792nob25LzVsay0pNTFE66aYVSFupeFfVNeUSpKhUpXWjJoCurqsOBaeqbYDppqFUSFZphvyyGM7eycFxvPfmBP5hdGDGx4LzhxF8NHrFsWvlXDPIKgDRMKWkBtkopphUcyOa7Hp7dt179yNhiOPRJW_z-mMlqNiyYTJT5ZnS3oXgcX6eyui4pTz-k3Lm3535X6jcHLTBnM1zT065Fvk_7Za33Ozy_-nexMeAepds5H8A97O-Bw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>de Souza, Vinicius Carius</creator><creator>Antunes, Deborah</creator><creator>Santos, Lucianna H. S.</creator><creator>Zabala Capriles Goliatt, Priscila Vanessa</creator><creator>Caffarena, Ernesto Raul</creator><creator>Ramos Guimaraes, Ana Carolina</creator><creator>Galvao, Teca Calcagno</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0031-6537</orcidid><orcidid>https://orcid.org/0000-0002-8353-3034</orcidid><orcidid>https://orcid.org/0000-0002-6910-0697</orcidid><orcidid>https://orcid.org/0000-0002-2927-0800</orcidid><orcidid>https://orcid.org/0000-0001-8075-3253</orcidid><orcidid>https://orcid.org/0000-0003-1260-543X</orcidid></search><sort><creationdate>20200501</creationdate><title>Insights into the Mechanism of Ethionamide Resistance in Mycobacterium tuberculosis through an in silico Structural Evaluation of EthA and Mutants Identified in Clinical Isolates</title><author>de Souza, Vinicius Carius ; Antunes, Deborah ; Santos, Lucianna H. S. ; Zabala Capriles Goliatt, Priscila Vanessa ; Caffarena, Ernesto Raul ; Ramos Guimaraes, Ana Carolina ; Galvao, Teca Calcagno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-2bd1b00dc674e078b39255038a842b2cc6bdaa95529e430b76a1c66004812c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Binding sites</topic><topic>BVMO</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Drug resistance</topic><topic>Enzymes</topic><topic>EthA</topic><topic>ethionamide resistance</topic><topic>Free energy</topic><topic>Homology</topic><topic>Ligands</topic><topic>Molecular docking</topic><topic>Molecular dynamics</topic><topic>Mutation</topic><topic>Physical Sciences</topic><topic>Resistance factors</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>thermodynamic integration</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Vinicius Carius</creatorcontrib><creatorcontrib>Antunes, Deborah</creatorcontrib><creatorcontrib>Santos, Lucianna H. S.</creatorcontrib><creatorcontrib>Zabala Capriles Goliatt, Priscila Vanessa</creatorcontrib><creatorcontrib>Caffarena, Ernesto Raul</creatorcontrib><creatorcontrib>Ramos Guimaraes, Ana Carolina</creatorcontrib><creatorcontrib>Galvao, Teca Calcagno</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Vinicius Carius</au><au>Antunes, Deborah</au><au>Santos, Lucianna H. S.</au><au>Zabala Capriles Goliatt, Priscila Vanessa</au><au>Caffarena, Ernesto Raul</au><au>Ramos Guimaraes, Ana Carolina</au><au>Galvao, Teca Calcagno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the Mechanism of Ethionamide Resistance in Mycobacterium tuberculosis through an in silico Structural Evaluation of EthA and Mutants Identified in Clinical Isolates</atitle><jtitle>Catalysts</jtitle><stitle>CATALYSTS</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>543</spage><pages>543-</pages><artnum>543</artnum><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>Mutation in the ethionamide (ETH) activating enzyme, EthA, is the main factor determining resistance to this drug, used to treat TB patients infected with MDR and XDRMycobacterium tuberculosisisolates. Many mutations in EthA of ETH resistant (ETH-R) isolates have been described but their roles in resistance remain uncharacterized, partly because structural studies on the enzyme are lacking. Thus, we took a two-tier approach to evaluate two mutations (Y50C and T453I) found in ETH-R clinical isolates. First, we used a combination of comparative modeling, molecular docking, and molecular dynamics to build an EthA model in complex with ETH that has hallmark features of structurally characterized homologs. Second, we used free energy computational calculations for the reliable prediction of relative free energies between the wild type and mutant enzymes. The Delta Delta G values for Y50C and T453I mutant enzymes in complex with FADH(2)-NADP-ETH were 3.34 (+/-0.55) and 8.11 (+/-0.51) kcal/mol, respectively, compared to the wild type complex. The positive Delta Delta G values indicate that the wild type complex is more stable than the mutants, with the T453I complex being the least stable. These are the first results shedding light on the molecular basis of ETH resistance, namely reduced complex stability of mutant EthA.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/catal10050543</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0031-6537</orcidid><orcidid>https://orcid.org/0000-0002-8353-3034</orcidid><orcidid>https://orcid.org/0000-0002-6910-0697</orcidid><orcidid>https://orcid.org/0000-0002-2927-0800</orcidid><orcidid>https://orcid.org/0000-0001-8075-3253</orcidid><orcidid>https://orcid.org/0000-0003-1260-543X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4344
ispartof Catalysts, 2020-05, Vol.10 (5), p.543, Article 543
issn 2073-4344
2073-4344
language eng
recordid cdi_webofscience_primary_000546007000088
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Amino acids
Binding sites
BVMO
Catalysis
Catalysts
Chemical reactions
Chemistry
Chemistry, Physical
Drug resistance
Enzymes
EthA
ethionamide resistance
Free energy
Homology
Ligands
Molecular docking
Molecular dynamics
Mutation
Physical Sciences
Resistance factors
Science & Technology
Simulation
thermodynamic integration
Tuberculosis
title Insights into the Mechanism of Ethionamide Resistance in Mycobacterium tuberculosis through an in silico Structural Evaluation of EthA and Mutants Identified in Clinical Isolates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20Mechanism%20of%20Ethionamide%20Resistance%20in%20Mycobacterium%20tuberculosis%20through%20an%20in%20silico%20Structural%20Evaluation%20of%20EthA%20and%20Mutants%20Identified%20in%20Clinical%20Isolates&rft.jtitle=Catalysts&rft.au=de%20Souza,%20Vinicius%20Carius&rft.date=2020-05-01&rft.volume=10&rft.issue=5&rft.spage=543&rft.pages=543-&rft.artnum=543&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal10050543&rft_dat=%3Cproquest_webof%3E2404434418%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404434418&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_978f51a529aa461bb8ca86b1b18bf646&rfr_iscdi=true