Porous Pt Nanospheres Incorporated with GOx to Enable Synergistic Oxygen‐Inductive Starvation/Electrodynamic Tumor Therapy
Glucose‐oxidase (GOx)‐mediated starvation by consuming intracellular glucose has aroused extensive exploration as an advanced approach for tumor treatment. However, this reaction of catalytic oxidation by GOx is highly dependent on the on‐site oxygen content, and thus starvation therapy often suffer...
Gespeichert in:
Veröffentlicht in: | Advanced science 2020-09, Vol.7 (17), p.2001223-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | 2001223 |
container_title | Advanced science |
container_volume | 7 |
creator | Lu, Zijie Gao, JiaYu Fang, Chao Zhou, Yi Li, Xiang Han, Gaorong |
description | Glucose‐oxidase (GOx)‐mediated starvation by consuming intracellular glucose has aroused extensive exploration as an advanced approach for tumor treatment. However, this reaction of catalytic oxidation by GOx is highly dependent on the on‐site oxygen content, and thus starvation therapy often suffers unexpected anticancer outcomes due to the intrinsic tumorous hypoxia. Herein, porous platinum nanospheres (pPts), incorporated with GOx molecules (PtGs), are synthesized to enable synergistic cancer therapy. In this system, GOx can effectively catalyze the oxidation of glucose to generate H2O2, while pPt triggers the decomposition of both endogenous and exogenous H2O2 to produce considerable content of O2 to facilitate the glucose consumption by GOx. Meanwhile, pPt induces remarkable content of intracellular reactive oxygen species (ROS) under an alternating electric field, leading to cellular oxidative stress injury and promotes apoptosis following the mechanism of electrodynamic therapy (EDT). In consequence, the PtG nanocomposite exhibits significant anticancer effect both in vitro and in vivo. This study has therefore demonstrated a fascinating therapeutic platform enabling oxygen‐inductive starvation/EDT synergistic strategy for effective tumor treatment.
Porous platinum nanospheres (pPts) incorporated with glucose oxidase (GOx) molecules (PtGs) are synthesized for synergistic electrodynamic/starvation therapy. Despite its feasible loading for GOx, pPt enables sufficient O2 supply to facilitate GOx‐mediated starvation by decomposing H2O2. Meanwhile, PtG induces reactive oxygen species (ROS) under an electric field following an electrodynamic mechanism. Considerable in vitro and in vivo tumor inhibition is consequently achieved. |
doi_str_mv | 10.1002/advs.202001223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_baf92ee021b44af7aca6d930ad842f87</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_baf92ee021b44af7aca6d930ad842f87</doaj_id><sourcerecordid>2440870794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5290-101ce547f49fdd647977a9ae7d84ee875412192563994af00eb293be82ff4a173</originalsourceid><addsrcrecordid>eNqFkkFv0zAUxyMEYtPYlSOKxIVLO9tx6viCNI2yVZropBWu1kvy0qZK7GA73SJx4CPsM_JJcOioNi6cbNk__57_9ouit5RMKSHsDMqdmzLCCKGMJS-iY0ZlNkkyzl8-mR9Fp85tSYDSRHCavY6OEiZlSpk4jn7cGGt6F9_4-Ato47oNWnTxQhfGdsaCxzK-q_0mvlzex97Ecw15g_HtoNGua-frIl7eD2vUv34-LHTZF77ehW0Pdge-Nvps3mDhrSkHDW2AV31rbLwKVaAb3kSvKmgcnj6OJ9HXz_PVxdXkenm5uDi_nhQpk2RCCS0w5aLisirLGRdSCJCAosw4YiZSTkNYls4SKTlUhGDOZJJjxqqKAxXJSbTYe0sDW9XZugU7KAO1-rNg7FqBDVEaVDlUkiESRnMeXAIKmJUyIRBqsSobXR_3rq7PWywL1N5C80z6fEfXG7U2OyVSIhIyCj48Cqz53qPzqq1dgU0DGsNPKMZ5SMRSNgvo-3_QremtDk81UiQTREgeqOmeKqxxzmJ1uAwlauwTNfaJOvRJOPDuaYQD_rcrAsD3wF3d4PAfnTr_9O2WZhlJfgO75swb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440870794</pqid></control><display><type>article</type><title>Porous Pt Nanospheres Incorporated with GOx to Enable Synergistic Oxygen‐Inductive Starvation/Electrodynamic Tumor Therapy</title><source>Wiley-Blackwell Journals</source><source>Wiley Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Lu, Zijie ; Gao, JiaYu ; Fang, Chao ; Zhou, Yi ; Li, Xiang ; Han, Gaorong</creator><creatorcontrib>Lu, Zijie ; Gao, JiaYu ; Fang, Chao ; Zhou, Yi ; Li, Xiang ; Han, Gaorong</creatorcontrib><description>Glucose‐oxidase (GOx)‐mediated starvation by consuming intracellular glucose has aroused extensive exploration as an advanced approach for tumor treatment. However, this reaction of catalytic oxidation by GOx is highly dependent on the on‐site oxygen content, and thus starvation therapy often suffers unexpected anticancer outcomes due to the intrinsic tumorous hypoxia. Herein, porous platinum nanospheres (pPts), incorporated with GOx molecules (PtGs), are synthesized to enable synergistic cancer therapy. In this system, GOx can effectively catalyze the oxidation of glucose to generate H2O2, while pPt triggers the decomposition of both endogenous and exogenous H2O2 to produce considerable content of O2 to facilitate the glucose consumption by GOx. Meanwhile, pPt induces remarkable content of intracellular reactive oxygen species (ROS) under an alternating electric field, leading to cellular oxidative stress injury and promotes apoptosis following the mechanism of electrodynamic therapy (EDT). In consequence, the PtG nanocomposite exhibits significant anticancer effect both in vitro and in vivo. This study has therefore demonstrated a fascinating therapeutic platform enabling oxygen‐inductive starvation/EDT synergistic strategy for effective tumor treatment.
Porous platinum nanospheres (pPts) incorporated with glucose oxidase (GOx) molecules (PtGs) are synthesized for synergistic electrodynamic/starvation therapy. Despite its feasible loading for GOx, pPt enables sufficient O2 supply to facilitate GOx‐mediated starvation by decomposing H2O2. Meanwhile, PtG induces reactive oxygen species (ROS) under an electric field following an electrodynamic mechanism. Considerable in vitro and in vivo tumor inhibition is consequently achieved.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202001223</identifier><identifier>PMID: 32995127</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Ablation ; Cancer therapies ; Decomposition ; Electric fields ; electrodynamic therapy ; Glucose ; Hypoxia ; Nanoparticles ; Oxidative stress ; oxygen‐inductive starvation ; porous Pt nanospheres ; Scientific imaging ; Starvation ; synergistic tumor therapy ; Tumors</subject><ispartof>Advanced science, 2020-09, Vol.7 (17), p.2001223-n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5290-101ce547f49fdd647977a9ae7d84ee875412192563994af00eb293be82ff4a173</citedby><cites>FETCH-LOGICAL-c5290-101ce547f49fdd647977a9ae7d84ee875412192563994af00eb293be82ff4a173</cites><orcidid>0000-0002-4675-5367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507307/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507307/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,2103,11564,27926,27927,45576,45577,46054,46478,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32995127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Zijie</creatorcontrib><creatorcontrib>Gao, JiaYu</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Han, Gaorong</creatorcontrib><title>Porous Pt Nanospheres Incorporated with GOx to Enable Synergistic Oxygen‐Inductive Starvation/Electrodynamic Tumor Therapy</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Glucose‐oxidase (GOx)‐mediated starvation by consuming intracellular glucose has aroused extensive exploration as an advanced approach for tumor treatment. However, this reaction of catalytic oxidation by GOx is highly dependent on the on‐site oxygen content, and thus starvation therapy often suffers unexpected anticancer outcomes due to the intrinsic tumorous hypoxia. Herein, porous platinum nanospheres (pPts), incorporated with GOx molecules (PtGs), are synthesized to enable synergistic cancer therapy. In this system, GOx can effectively catalyze the oxidation of glucose to generate H2O2, while pPt triggers the decomposition of both endogenous and exogenous H2O2 to produce considerable content of O2 to facilitate the glucose consumption by GOx. Meanwhile, pPt induces remarkable content of intracellular reactive oxygen species (ROS) under an alternating electric field, leading to cellular oxidative stress injury and promotes apoptosis following the mechanism of electrodynamic therapy (EDT). In consequence, the PtG nanocomposite exhibits significant anticancer effect both in vitro and in vivo. This study has therefore demonstrated a fascinating therapeutic platform enabling oxygen‐inductive starvation/EDT synergistic strategy for effective tumor treatment.
Porous platinum nanospheres (pPts) incorporated with glucose oxidase (GOx) molecules (PtGs) are synthesized for synergistic electrodynamic/starvation therapy. Despite its feasible loading for GOx, pPt enables sufficient O2 supply to facilitate GOx‐mediated starvation by decomposing H2O2. Meanwhile, PtG induces reactive oxygen species (ROS) under an electric field following an electrodynamic mechanism. Considerable in vitro and in vivo tumor inhibition is consequently achieved.</description><subject>Ablation</subject><subject>Cancer therapies</subject><subject>Decomposition</subject><subject>Electric fields</subject><subject>electrodynamic therapy</subject><subject>Glucose</subject><subject>Hypoxia</subject><subject>Nanoparticles</subject><subject>Oxidative stress</subject><subject>oxygen‐inductive starvation</subject><subject>porous Pt nanospheres</subject><subject>Scientific imaging</subject><subject>Starvation</subject><subject>synergistic tumor therapy</subject><subject>Tumors</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqFkkFv0zAUxyMEYtPYlSOKxIVLO9tx6viCNI2yVZropBWu1kvy0qZK7GA73SJx4CPsM_JJcOioNi6cbNk__57_9ouit5RMKSHsDMqdmzLCCKGMJS-iY0ZlNkkyzl8-mR9Fp85tSYDSRHCavY6OEiZlSpk4jn7cGGt6F9_4-Ato47oNWnTxQhfGdsaCxzK-q_0mvlzex97Ecw15g_HtoNGua-frIl7eD2vUv34-LHTZF77ehW0Pdge-Nvps3mDhrSkHDW2AV31rbLwKVaAb3kSvKmgcnj6OJ9HXz_PVxdXkenm5uDi_nhQpk2RCCS0w5aLisirLGRdSCJCAosw4YiZSTkNYls4SKTlUhGDOZJJjxqqKAxXJSbTYe0sDW9XZugU7KAO1-rNg7FqBDVEaVDlUkiESRnMeXAIKmJUyIRBqsSobXR_3rq7PWywL1N5C80z6fEfXG7U2OyVSIhIyCj48Cqz53qPzqq1dgU0DGsNPKMZ5SMRSNgvo-3_QremtDk81UiQTREgeqOmeKqxxzmJ1uAwlauwTNfaJOvRJOPDuaYQD_rcrAsD3wF3d4PAfnTr_9O2WZhlJfgO75swb</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Lu, Zijie</creator><creator>Gao, JiaYu</creator><creator>Fang, Chao</creator><creator>Zhou, Yi</creator><creator>Li, Xiang</creator><creator>Han, Gaorong</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4675-5367</orcidid></search><sort><creationdate>20200901</creationdate><title>Porous Pt Nanospheres Incorporated with GOx to Enable Synergistic Oxygen‐Inductive Starvation/Electrodynamic Tumor Therapy</title><author>Lu, Zijie ; Gao, JiaYu ; Fang, Chao ; Zhou, Yi ; Li, Xiang ; Han, Gaorong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5290-101ce547f49fdd647977a9ae7d84ee875412192563994af00eb293be82ff4a173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Cancer therapies</topic><topic>Decomposition</topic><topic>Electric fields</topic><topic>electrodynamic therapy</topic><topic>Glucose</topic><topic>Hypoxia</topic><topic>Nanoparticles</topic><topic>Oxidative stress</topic><topic>oxygen‐inductive starvation</topic><topic>porous Pt nanospheres</topic><topic>Scientific imaging</topic><topic>Starvation</topic><topic>synergistic tumor therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Zijie</creatorcontrib><creatorcontrib>Gao, JiaYu</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Han, Gaorong</creatorcontrib><collection>Wiley Open Access Journals</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Zijie</au><au>Gao, JiaYu</au><au>Fang, Chao</au><au>Zhou, Yi</au><au>Li, Xiang</au><au>Han, Gaorong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Pt Nanospheres Incorporated with GOx to Enable Synergistic Oxygen‐Inductive Starvation/Electrodynamic Tumor Therapy</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>7</volume><issue>17</issue><spage>2001223</spage><epage>n/a</epage><pages>2001223-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Glucose‐oxidase (GOx)‐mediated starvation by consuming intracellular glucose has aroused extensive exploration as an advanced approach for tumor treatment. However, this reaction of catalytic oxidation by GOx is highly dependent on the on‐site oxygen content, and thus starvation therapy often suffers unexpected anticancer outcomes due to the intrinsic tumorous hypoxia. Herein, porous platinum nanospheres (pPts), incorporated with GOx molecules (PtGs), are synthesized to enable synergistic cancer therapy. In this system, GOx can effectively catalyze the oxidation of glucose to generate H2O2, while pPt triggers the decomposition of both endogenous and exogenous H2O2 to produce considerable content of O2 to facilitate the glucose consumption by GOx. Meanwhile, pPt induces remarkable content of intracellular reactive oxygen species (ROS) under an alternating electric field, leading to cellular oxidative stress injury and promotes apoptosis following the mechanism of electrodynamic therapy (EDT). In consequence, the PtG nanocomposite exhibits significant anticancer effect both in vitro and in vivo. This study has therefore demonstrated a fascinating therapeutic platform enabling oxygen‐inductive starvation/EDT synergistic strategy for effective tumor treatment.
Porous platinum nanospheres (pPts) incorporated with glucose oxidase (GOx) molecules (PtGs) are synthesized for synergistic electrodynamic/starvation therapy. Despite its feasible loading for GOx, pPt enables sufficient O2 supply to facilitate GOx‐mediated starvation by decomposing H2O2. Meanwhile, PtG induces reactive oxygen species (ROS) under an electric field following an electrodynamic mechanism. Considerable in vitro and in vivo tumor inhibition is consequently achieved.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>32995127</pmid><doi>10.1002/advs.202001223</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4675-5367</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2020-09, Vol.7 (17), p.2001223-n/a |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_baf92ee021b44af7aca6d930ad842f87 |
source | Wiley-Blackwell Journals; Wiley Open Access Journals; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Ablation Cancer therapies Decomposition Electric fields electrodynamic therapy Glucose Hypoxia Nanoparticles Oxidative stress oxygen‐inductive starvation porous Pt nanospheres Scientific imaging Starvation synergistic tumor therapy Tumors |
title | Porous Pt Nanospheres Incorporated with GOx to Enable Synergistic Oxygen‐Inductive Starvation/Electrodynamic Tumor Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Pt%20Nanospheres%20Incorporated%20with%20GOx%20to%20Enable%20Synergistic%20Oxygen%E2%80%90Inductive%20Starvation/Electrodynamic%20Tumor%20Therapy&rft.jtitle=Advanced%20science&rft.au=Lu,%20Zijie&rft.date=2020-09-01&rft.volume=7&rft.issue=17&rft.spage=2001223&rft.epage=n/a&rft.pages=2001223-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202001223&rft_dat=%3Cproquest_doaj_%3E2440870794%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440870794&rft_id=info:pmid/32995127&rft_doaj_id=oai_doaj_org_article_baf92ee021b44af7aca6d930ad842f87&rfr_iscdi=true |