MOD-phi CONVERGENCE: APPROXIMATION OF DISCRETE MEASURES AND HARMONIC ANALYSIS ON THE TORUS

In this paper, we relate the framework of mod-phi convergence to the construction of approximation schemes for lattice-distributed random variables. The point of view taken here is the one of Fourier analysis in the Wiener algebra, allowing the computation of asymptotic equivalents of the local, Kol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'Institut Fourier 2020-06, Vol.70 (3), p.1115-1197
Hauptverfasser: Chhaibi, Reda, Delbaen, Freddy, Meliot, Pierre-Loic, Nikeghbali, Ashkan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we relate the framework of mod-phi convergence to the construction of approximation schemes for lattice-distributed random variables. The point of view taken here is the one of Fourier analysis in the Wiener algebra, allowing the computation of asymptotic equivalents of the local, Kolmogorov and total variation distances. By using signed measures instead of probability measures, we are able to construct better approximations of discrete lattice distributions than the standard Poisson approximation. This theory applies to various examples arising from combinatorics and number theory: number of cycles in permutations, number of prime divisors of a random integer, number of irreducible factors of a random polynomial, etc. Our approach allows us to deal with approximations in higher dimensions as well. In this setting, we bring out the influence of the correlations between the components of the random vectors in our asymptotic formulas.
ISSN:0373-0956
1777-5310
1777-5310
DOI:10.5802/aif.3332