Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes
Endogenous homeostatic mechanisms can restore normal neuronal function following cocaine-induced neuroadaptations. Such mechanisms may be exploited to develop novel therapies for cocaine addiction, but a molecular target has not yet been identified. Here we profiled mouse gene expression during earl...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-01, Vol.11 (1), p.504-14, Article 504 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 1 |
container_start_page | 504 |
container_title | Nature communications |
container_volume | 11 |
creator | Carpenter, Marco D. Hu, Qiwen Bond, Allison M. Lombroso, Sonia I. Czarnecki, Kyle S. Lim, Carissa J. Song, Hongjun Wimmer, Mathieu E. Pierce, R. Christopher Heller, Elizabeth A. |
description | Endogenous homeostatic mechanisms can restore normal neuronal function following cocaine-induced neuroadaptations. Such mechanisms may be exploited to develop novel therapies for cocaine addiction, but a molecular target has not yet been identified. Here we profiled mouse gene expression during early and late cocaine abstinence to identify putative regulators of neural homeostasis. Cocaine activated the transcription factor,
Nr4a1
, and its target gene,
Cartpt
, a key molecule involved in dopamine metabolism. Sustained activation of
Cartpt
at late abstinence was coupled with depletion of the repressive histone modification, H3K27me3, and enrichment of activating marks, H3K27ac and H3K4me3. Using both CRISPR-mediated and small molecule
Nr4a1
activation, we demonstrated the direct causal role of
Nr4a1
in sustained activation of
Cartpt
and in attenuation of cocaine-evoked behavior. Our findings provide evidence that targeting abstinence-induced homeostatic gene expression is a potential therapeutic target in cocaine addiction.
The regulation of gene expression underlies many forms of learning and behaviour in the mammalian brain. Carpenter et al. define a molecular mechanism whereby
Nr4a1
activation leads to persistent changes in gene expression, chromatin and behaviour, in the context of cocaine abstinence. |
doi_str_mv | 10.1038/s41467-020-14331-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000543967800001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_78819fd7dce048ceba481adca31e2868</doaj_id><sourcerecordid>2344544744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-d9154d25d10b7425cbbe8daca953dacda0f783a20788e278349ad86d3f0863f63</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEolXpH-CAInFEKf5KYl-Q0IqPShVc4GxN7EnWq9042M6i_fd4N-3SXhC-jOV55vWM3imK15TcUMLl-yioaNqKMFJRwTmtDs-KS0YErWjL-PNH94viOsYNyYcrKoV4WVxwqiRpmLos9LcggJZxnqaAMWIsjTfgRqzcaGeDtuxwDXvnQ7l3UOLkBhwxOVMGHOYtJOfH0vfl2u_QxwTHTIIwYCqPYHxVvOhhG_H6Pl4VPz9_-rH6Wt19_3K7-nhXmYY0qbKK1sKy2lLStYLVputQWjCgap6DBdK3kgMjrZTI8lUosLKxvCey4X3Dr4rbRdd62OgpuB2Eg_bg9OnBh0FDyM1tUWcJqnrbWoNESIMdCEnBGuAUmWxk1vqwaE1zt8OMjSnA9ono08zo1nrwe90oSRlVWeDtvUDwv2aMSW_8HMY8v2ZciFqIVohMsYUywccYsD__QIk-eqwXj3X2WJ881odc9OZxb-eSB0czIBfgN3a-j8bhaPCM5SWoBVdNK4_7QFcunRxc-XlMufTd_5dmmi90zMQ4YPg75D_6_wPgr9Un</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344544744</pqid></control><display><type>article</type><title>Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Carpenter, Marco D. ; Hu, Qiwen ; Bond, Allison M. ; Lombroso, Sonia I. ; Czarnecki, Kyle S. ; Lim, Carissa J. ; Song, Hongjun ; Wimmer, Mathieu E. ; Pierce, R. Christopher ; Heller, Elizabeth A.</creator><creatorcontrib>Carpenter, Marco D. ; Hu, Qiwen ; Bond, Allison M. ; Lombroso, Sonia I. ; Czarnecki, Kyle S. ; Lim, Carissa J. ; Song, Hongjun ; Wimmer, Mathieu E. ; Pierce, R. Christopher ; Heller, Elizabeth A.</creatorcontrib><description>Endogenous homeostatic mechanisms can restore normal neuronal function following cocaine-induced neuroadaptations. Such mechanisms may be exploited to develop novel therapies for cocaine addiction, but a molecular target has not yet been identified. Here we profiled mouse gene expression during early and late cocaine abstinence to identify putative regulators of neural homeostasis. Cocaine activated the transcription factor,
Nr4a1
, and its target gene,
Cartpt
, a key molecule involved in dopamine metabolism. Sustained activation of
Cartpt
at late abstinence was coupled with depletion of the repressive histone modification, H3K27me3, and enrichment of activating marks, H3K27ac and H3K4me3. Using both CRISPR-mediated and small molecule
Nr4a1
activation, we demonstrated the direct causal role of
Nr4a1
in sustained activation of
Cartpt
and in attenuation of cocaine-evoked behavior. Our findings provide evidence that targeting abstinence-induced homeostatic gene expression is a potential therapeutic target in cocaine addiction.
The regulation of gene expression underlies many forms of learning and behaviour in the mammalian brain. Carpenter et al. define a molecular mechanism whereby
Nr4a1
activation leads to persistent changes in gene expression, chromatin and behaviour, in the context of cocaine abstinence.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-14331-y</identifier><identifier>PMID: 31980629</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/15 ; 38/39 ; 38/90 ; 42/41 ; 45/91 ; 631/337/176 ; 631/378/1689/5 ; 64/60 ; Activation ; Addictions ; Animals ; Attenuation ; Behavior ; Behavior, Animal - drug effects ; Chromatin ; Cocaine ; Cocaine - administration & dosage ; Cocaine - pharmacology ; CRISPR ; CRISPR-Cas Systems - genetics ; Depletion ; Dopamine ; Drug abuse ; Epigenesis, Genetic - drug effects ; Female ; Gene expression ; Gene regulation ; Histones - metabolism ; Homeostasis ; Homeostasis - drug effects ; Homeostasis - genetics ; Humanities and Social Sciences ; Kinases ; Male ; Metabolism ; Mice, Inbred C57BL ; multidisciplinary ; Multidisciplinary Sciences ; Narcotics ; Neurons - drug effects ; Neurons - metabolism ; Nuclear Receptor Subfamily 4, Group A, Member 1 - metabolism ; Phenylacetates - pharmacology ; Promoter Regions, Genetic - genetics ; Protein Processing, Post-Translational ; Recovery of function ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Synapsins - metabolism ; Therapeutic applications</subject><ispartof>Nature communications, 2020-01, Vol.11 (1), p.504-14, Article 504</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>49</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000543967800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c606t-d9154d25d10b7425cbbe8daca953dacda0f783a20788e278349ad86d3f0863f63</citedby><cites>FETCH-LOGICAL-c606t-d9154d25d10b7425cbbe8daca953dacda0f783a20788e278349ad86d3f0863f63</cites><orcidid>0000-0002-8193-9428 ; 0000-0002-2984-8705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981219/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981219/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,28255,41127,42196,51583,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31980629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carpenter, Marco D.</creatorcontrib><creatorcontrib>Hu, Qiwen</creatorcontrib><creatorcontrib>Bond, Allison M.</creatorcontrib><creatorcontrib>Lombroso, Sonia I.</creatorcontrib><creatorcontrib>Czarnecki, Kyle S.</creatorcontrib><creatorcontrib>Lim, Carissa J.</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Wimmer, Mathieu E.</creatorcontrib><creatorcontrib>Pierce, R. Christopher</creatorcontrib><creatorcontrib>Heller, Elizabeth A.</creatorcontrib><title>Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>Endogenous homeostatic mechanisms can restore normal neuronal function following cocaine-induced neuroadaptations. Such mechanisms may be exploited to develop novel therapies for cocaine addiction, but a molecular target has not yet been identified. Here we profiled mouse gene expression during early and late cocaine abstinence to identify putative regulators of neural homeostasis. Cocaine activated the transcription factor,
Nr4a1
, and its target gene,
Cartpt
, a key molecule involved in dopamine metabolism. Sustained activation of
Cartpt
at late abstinence was coupled with depletion of the repressive histone modification, H3K27me3, and enrichment of activating marks, H3K27ac and H3K4me3. Using both CRISPR-mediated and small molecule
Nr4a1
activation, we demonstrated the direct causal role of
Nr4a1
in sustained activation of
Cartpt
and in attenuation of cocaine-evoked behavior. Our findings provide evidence that targeting abstinence-induced homeostatic gene expression is a potential therapeutic target in cocaine addiction.
The regulation of gene expression underlies many forms of learning and behaviour in the mammalian brain. Carpenter et al. define a molecular mechanism whereby
Nr4a1
activation leads to persistent changes in gene expression, chromatin and behaviour, in the context of cocaine abstinence.</description><subject>38/15</subject><subject>38/39</subject><subject>38/90</subject><subject>42/41</subject><subject>45/91</subject><subject>631/337/176</subject><subject>631/378/1689/5</subject><subject>64/60</subject><subject>Activation</subject><subject>Addictions</subject><subject>Animals</subject><subject>Attenuation</subject><subject>Behavior</subject><subject>Behavior, Animal - drug effects</subject><subject>Chromatin</subject><subject>Cocaine</subject><subject>Cocaine - administration & dosage</subject><subject>Cocaine - pharmacology</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Depletion</subject><subject>Dopamine</subject><subject>Drug abuse</subject><subject>Epigenesis, Genetic - drug effects</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Histones - metabolism</subject><subject>Homeostasis</subject><subject>Homeostasis - drug effects</subject><subject>Homeostasis - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Narcotics</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Nuclear Receptor Subfamily 4, Group A, Member 1 - metabolism</subject><subject>Phenylacetates - pharmacology</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Processing, Post-Translational</subject><subject>Recovery of function</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Synapsins - metabolism</subject><subject>Therapeutic applications</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEolXpH-CAInFEKf5KYl-Q0IqPShVc4GxN7EnWq9042M6i_fd4N-3SXhC-jOV55vWM3imK15TcUMLl-yioaNqKMFJRwTmtDs-KS0YErWjL-PNH94viOsYNyYcrKoV4WVxwqiRpmLos9LcggJZxnqaAMWIsjTfgRqzcaGeDtuxwDXvnQ7l3UOLkBhwxOVMGHOYtJOfH0vfl2u_QxwTHTIIwYCqPYHxVvOhhG_H6Pl4VPz9_-rH6Wt19_3K7-nhXmYY0qbKK1sKy2lLStYLVputQWjCgap6DBdK3kgMjrZTI8lUosLKxvCey4X3Dr4rbRdd62OgpuB2Eg_bg9OnBh0FDyM1tUWcJqnrbWoNESIMdCEnBGuAUmWxk1vqwaE1zt8OMjSnA9ono08zo1nrwe90oSRlVWeDtvUDwv2aMSW_8HMY8v2ZciFqIVohMsYUywccYsD__QIk-eqwXj3X2WJ881odc9OZxb-eSB0czIBfgN3a-j8bhaPCM5SWoBVdNK4_7QFcunRxc-XlMufTd_5dmmi90zMQ4YPg75D_6_wPgr9Un</recordid><startdate>20200124</startdate><enddate>20200124</enddate><creator>Carpenter, Marco D.</creator><creator>Hu, Qiwen</creator><creator>Bond, Allison M.</creator><creator>Lombroso, Sonia I.</creator><creator>Czarnecki, Kyle S.</creator><creator>Lim, Carissa J.</creator><creator>Song, Hongjun</creator><creator>Wimmer, Mathieu E.</creator><creator>Pierce, R. Christopher</creator><creator>Heller, Elizabeth A.</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8193-9428</orcidid><orcidid>https://orcid.org/0000-0002-2984-8705</orcidid></search><sort><creationdate>20200124</creationdate><title>Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes</title><author>Carpenter, Marco D. ; Hu, Qiwen ; Bond, Allison M. ; Lombroso, Sonia I. ; Czarnecki, Kyle S. ; Lim, Carissa J. ; Song, Hongjun ; Wimmer, Mathieu E. ; Pierce, R. Christopher ; Heller, Elizabeth A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-d9154d25d10b7425cbbe8daca953dacda0f783a20788e278349ad86d3f0863f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38/15</topic><topic>38/39</topic><topic>38/90</topic><topic>42/41</topic><topic>45/91</topic><topic>631/337/176</topic><topic>631/378/1689/5</topic><topic>64/60</topic><topic>Activation</topic><topic>Addictions</topic><topic>Animals</topic><topic>Attenuation</topic><topic>Behavior</topic><topic>Behavior, Animal - drug effects</topic><topic>Chromatin</topic><topic>Cocaine</topic><topic>Cocaine - administration & dosage</topic><topic>Cocaine - pharmacology</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Depletion</topic><topic>Dopamine</topic><topic>Drug abuse</topic><topic>Epigenesis, Genetic - drug effects</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Histones - metabolism</topic><topic>Homeostasis</topic><topic>Homeostasis - drug effects</topic><topic>Homeostasis - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Narcotics</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Nuclear Receptor Subfamily 4, Group A, Member 1 - metabolism</topic><topic>Phenylacetates - pharmacology</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Processing, Post-Translational</topic><topic>Recovery of function</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Synapsins - metabolism</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpenter, Marco D.</creatorcontrib><creatorcontrib>Hu, Qiwen</creatorcontrib><creatorcontrib>Bond, Allison M.</creatorcontrib><creatorcontrib>Lombroso, Sonia I.</creatorcontrib><creatorcontrib>Czarnecki, Kyle S.</creatorcontrib><creatorcontrib>Lim, Carissa J.</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Wimmer, Mathieu E.</creatorcontrib><creatorcontrib>Pierce, R. Christopher</creatorcontrib><creatorcontrib>Heller, Elizabeth A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpenter, Marco D.</au><au>Hu, Qiwen</au><au>Bond, Allison M.</au><au>Lombroso, Sonia I.</au><au>Czarnecki, Kyle S.</au><au>Lim, Carissa J.</au><au>Song, Hongjun</au><au>Wimmer, Mathieu E.</au><au>Pierce, R. Christopher</au><au>Heller, Elizabeth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2020-01-24</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>504</spage><epage>14</epage><pages>504-14</pages><artnum>504</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Endogenous homeostatic mechanisms can restore normal neuronal function following cocaine-induced neuroadaptations. Such mechanisms may be exploited to develop novel therapies for cocaine addiction, but a molecular target has not yet been identified. Here we profiled mouse gene expression during early and late cocaine abstinence to identify putative regulators of neural homeostasis. Cocaine activated the transcription factor,
Nr4a1
, and its target gene,
Cartpt
, a key molecule involved in dopamine metabolism. Sustained activation of
Cartpt
at late abstinence was coupled with depletion of the repressive histone modification, H3K27me3, and enrichment of activating marks, H3K27ac and H3K4me3. Using both CRISPR-mediated and small molecule
Nr4a1
activation, we demonstrated the direct causal role of
Nr4a1
in sustained activation of
Cartpt
and in attenuation of cocaine-evoked behavior. Our findings provide evidence that targeting abstinence-induced homeostatic gene expression is a potential therapeutic target in cocaine addiction.
The regulation of gene expression underlies many forms of learning and behaviour in the mammalian brain. Carpenter et al. define a molecular mechanism whereby
Nr4a1
activation leads to persistent changes in gene expression, chromatin and behaviour, in the context of cocaine abstinence.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31980629</pmid><doi>10.1038/s41467-020-14331-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8193-9428</orcidid><orcidid>https://orcid.org/0000-0002-2984-8705</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-01, Vol.11 (1), p.504-14, Article 504 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_webofscience_primary_000543967800001CitationCount |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 38/15 38/39 38/90 42/41 45/91 631/337/176 631/378/1689/5 64/60 Activation Addictions Animals Attenuation Behavior Behavior, Animal - drug effects Chromatin Cocaine Cocaine - administration & dosage Cocaine - pharmacology CRISPR CRISPR-Cas Systems - genetics Depletion Dopamine Drug abuse Epigenesis, Genetic - drug effects Female Gene expression Gene regulation Histones - metabolism Homeostasis Homeostasis - drug effects Homeostasis - genetics Humanities and Social Sciences Kinases Male Metabolism Mice, Inbred C57BL multidisciplinary Multidisciplinary Sciences Narcotics Neurons - drug effects Neurons - metabolism Nuclear Receptor Subfamily 4, Group A, Member 1 - metabolism Phenylacetates - pharmacology Promoter Regions, Genetic - genetics Protein Processing, Post-Translational Recovery of function Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Synapsins - metabolism Therapeutic applications |
title | Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nr4a1%20suppresses%20cocaine-induced%20behavior%20via%20epigenetic%20regulation%20of%20homeostatic%20target%20genes&rft.jtitle=Nature%20communications&rft.au=Carpenter,%20Marco%20D.&rft.date=2020-01-24&rft.volume=11&rft.issue=1&rft.spage=504&rft.epage=14&rft.pages=504-14&rft.artnum=504&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-14331-y&rft_dat=%3Cproquest_webof%3E2344544744%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344544744&rft_id=info:pmid/31980629&rft_doaj_id=oai_doaj_org_article_78819fd7dce048ceba481adca31e2868&rfr_iscdi=true |