RNA-sequencing reveals positional memory of multipotent mesenchymal stromal cells from oral and maxillofacial tissue transcriptomes

BackgroundMultipotent mesenchymal stromal cells (MSCs) can be isolated from numerous tissues and are attractive candidates for therapeutic clinical applications due to their immunomodulatory and pro-regenerative capacity. Although the minimum criteria for defining MSCs have been defined, their chara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2020-06, Vol.21 (1), p.417-417, Article 417
Hauptverfasser: Onizuka, Satoru, Yamazaki, Yasuharu, Park, Sung-Joon, Sugimoto, Takayuki, Sone, Yumiko, Sjoqvist, Sebastian, Usui, Michihiko, Takeda, Akira, Nakai, Kenta, Nakashima, Keisuke, Iwata, Takanori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 417
container_issue 1
container_start_page 417
container_title BMC genomics
container_volume 21
creator Onizuka, Satoru
Yamazaki, Yasuharu
Park, Sung-Joon
Sugimoto, Takayuki
Sone, Yumiko
Sjoqvist, Sebastian
Usui, Michihiko
Takeda, Akira
Nakai, Kenta
Nakashima, Keisuke
Iwata, Takanori
description BackgroundMultipotent mesenchymal stromal cells (MSCs) can be isolated from numerous tissues and are attractive candidates for therapeutic clinical applications due to their immunomodulatory and pro-regenerative capacity. Although the minimum criteria for defining MSCs have been defined, their characteristics are known to vary depending on their tissue of origin.ResultsWe isolated and characterized human MSCs from three different bones (ilium (I-MSCs), maxilla (Mx-MSCs) and mandible (Md-MSCs)) and proceeded with next generation RNA-sequencing. Furthermore, to investigate the gene expression profiles among other cell types, we obtained RNA-seq data of human embryonic stem cells (ESCs) and several types of MSCs (periodontal ligament-derived MSCs, bone marrow-derived MSCs, and ESCs-derived MSCs) from the Sequence Reads Archive and analyzed the transcriptome profile. We found that MSCs derived from tissues of the maxillofacial region, such as the jaw bone and periodontal ligament, were HOX-negative, while those derived from other tissues were HOX-positive. We also identified that MSX1, LHX8, and BARX1, an essential regulator of craniofacial development, were strongly expressed in maxillofacial tissue-derived MSCs. Although MSCs may be divided into two distinct groups, the cells originated from over the neck or not, on the basis of differences in gene expression profile, the expression patterns of all CD antigen genes were similar among different type of MSCs, except for ESCs.ConclusionsOur findings suggest that MSCs from different anatomical locations, despite meeting general characterization criteria, have remarkable differences in gene expression and positional memory. Although stromal cells from different anatomical sources are generally categorized as MSCs, their differentiation potential and biological functions vary. We suggested that MSCs may retain an original tissue memory about the developmental process, including gene expression profiles. This could have an important impact when choosing an appropriate cell source for regenerative therapy using MSCs.
doi_str_mv 10.1186/s12864-020-06825-2
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000543547600004CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627548388</galeid><doaj_id>oai_doaj_org_article_5350b9212a304e9193287da19fb3083c</doaj_id><sourcerecordid>A627548388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c707t-70a3b4a5156c5ccd35fbda7d457179d8bdc8bc532e79a9e993602099f2144a863</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEoqXwB1igSGxAKMVvO5tKoxGPkSqQCqwtx3GmrpJ4sJ3SWfPHuemUoYNYoCxs33znWPf4FsVzjE4xVuJtwkQJViGCKiQU4RV5UBxjJnFFsGAP7-2PiicpXSGEJWCPiyNKuMQE4-Pi58WnRZXc98mN1o_rMrprZ_pUbkLy2YfR9OXghhC3ZejKYeqz34TsxgzVBJLL7QBEyjHMq3U9SDs4lCHC2YxtOZgb3_ehM9ZDJfuUJlfmaMZko9_kAD5Pi0cd3Ome3a0nxbf3774uP1bnnz-slovzykokcyWRoQ0zHHNhubUt5V3TGtky6EXWrWpaqxrLKXGyNrWrayogmrruCGbMKEFPitXOtw3mSm-iH0zc6mC8vi2EuNYmZm97pznlqKkJJoYi5mpcU6Jka3DdNRQpasHrbOe1mZrBtRYigY4PTA__jP5Sr8O1lhQjJBUYvLoziAHST1kPPs0BmtGFKWnCsCBCYEkAffkXehWmCE8zU4RJRoH8Q60NNODHLsC9djbVC0EkZ4qq-drTf1DwtW7wNoyu81A_ELw-EACT3U1emyklvfpycciSHWtjSCm6bp8HRnoeWb0bWQ3vom9HVs_dvbif5F7ye0YBUDvgh2tCl6yHuXN7DCHEGeVMCtghtvTZzHO7DNOYQfrm_6X0F28aB-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424743626</pqid></control><display><type>article</type><title>RNA-sequencing reveals positional memory of multipotent mesenchymal stromal cells from oral and maxillofacial tissue transcriptomes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Onizuka, Satoru ; Yamazaki, Yasuharu ; Park, Sung-Joon ; Sugimoto, Takayuki ; Sone, Yumiko ; Sjoqvist, Sebastian ; Usui, Michihiko ; Takeda, Akira ; Nakai, Kenta ; Nakashima, Keisuke ; Iwata, Takanori</creator><creatorcontrib>Onizuka, Satoru ; Yamazaki, Yasuharu ; Park, Sung-Joon ; Sugimoto, Takayuki ; Sone, Yumiko ; Sjoqvist, Sebastian ; Usui, Michihiko ; Takeda, Akira ; Nakai, Kenta ; Nakashima, Keisuke ; Iwata, Takanori</creatorcontrib><description>BackgroundMultipotent mesenchymal stromal cells (MSCs) can be isolated from numerous tissues and are attractive candidates for therapeutic clinical applications due to their immunomodulatory and pro-regenerative capacity. Although the minimum criteria for defining MSCs have been defined, their characteristics are known to vary depending on their tissue of origin.ResultsWe isolated and characterized human MSCs from three different bones (ilium (I-MSCs), maxilla (Mx-MSCs) and mandible (Md-MSCs)) and proceeded with next generation RNA-sequencing. Furthermore, to investigate the gene expression profiles among other cell types, we obtained RNA-seq data of human embryonic stem cells (ESCs) and several types of MSCs (periodontal ligament-derived MSCs, bone marrow-derived MSCs, and ESCs-derived MSCs) from the Sequence Reads Archive and analyzed the transcriptome profile. We found that MSCs derived from tissues of the maxillofacial region, such as the jaw bone and periodontal ligament, were HOX-negative, while those derived from other tissues were HOX-positive. We also identified that MSX1, LHX8, and BARX1, an essential regulator of craniofacial development, were strongly expressed in maxillofacial tissue-derived MSCs. Although MSCs may be divided into two distinct groups, the cells originated from over the neck or not, on the basis of differences in gene expression profile, the expression patterns of all CD antigen genes were similar among different type of MSCs, except for ESCs.ConclusionsOur findings suggest that MSCs from different anatomical locations, despite meeting general characterization criteria, have remarkable differences in gene expression and positional memory. Although stromal cells from different anatomical sources are generally categorized as MSCs, their differentiation potential and biological functions vary. We suggested that MSCs may retain an original tissue memory about the developmental process, including gene expression profiles. This could have an important impact when choosing an appropriate cell source for regenerative therapy using MSCs.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-020-06825-2</identifier><identifier>PMID: 32571211</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject><![CDATA[Analysis ; Antigens ; Archives & records ; Biomedical materials ; Biotechnology & Applied Microbiology ; Bone marrow ; Cell adhesion & migration ; Cell cycle ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Craniofacial growth ; Defects ; Embryo cells ; Embryonic stem cells ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation ; Gene Regulatory Networks ; Gene sequencing ; Genes ; Genetics & Heredity ; Genomics ; Health aspects ; High-Throughput Nucleotide Sequencing ; Homeodomain Proteins - genetics ; HOX genes ; Humans ; Iliac bone ; Ilium ; Ilium - chemistry ; Ilium - cytology ; Immunomodulation ; Jaw ; Life Sciences & Biomedicine ; Ligaments ; Mandible ; Mandible - chemistry ; Mandible - cytology ; Maxilla ; Maxilla - chemistry ; Maxilla - cytology ; Maxillofacial ; Maxillofacial bone ; Mesenchymal stem cells ; Mesenchymal Stem Cells - chemistry ; Mesenchymal Stem Cells - cytology ; Mesenchyme ; Multipotent mesenchymal stromal cells ; Organ Specificity ; Periodontal ligament ; Ribonucleic acid ; RNA ; RNA-sequencing ; Science & Technology ; Scientific equipment industry ; Sequence Analysis, RNA - methods ; Skin & tissue grafts ; Stem cells ; Stromal cells ; Therapeutic applications ; Tissues ; Whole Exome Sequencing]]></subject><ispartof>BMC genomics, 2020-06, Vol.21 (1), p.417-417, Article 417</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000543547600004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c707t-70a3b4a5156c5ccd35fbda7d457179d8bdc8bc532e79a9e993602099f2144a863</citedby><cites>FETCH-LOGICAL-c707t-70a3b4a5156c5ccd35fbda7d457179d8bdc8bc532e79a9e993602099f2144a863</cites><orcidid>0000-0002-5208-1848 ; 0000-0002-8721-8883 ; 0000-0002-1774-9590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310078/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310078/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32571211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Onizuka, Satoru</creatorcontrib><creatorcontrib>Yamazaki, Yasuharu</creatorcontrib><creatorcontrib>Park, Sung-Joon</creatorcontrib><creatorcontrib>Sugimoto, Takayuki</creatorcontrib><creatorcontrib>Sone, Yumiko</creatorcontrib><creatorcontrib>Sjoqvist, Sebastian</creatorcontrib><creatorcontrib>Usui, Michihiko</creatorcontrib><creatorcontrib>Takeda, Akira</creatorcontrib><creatorcontrib>Nakai, Kenta</creatorcontrib><creatorcontrib>Nakashima, Keisuke</creatorcontrib><creatorcontrib>Iwata, Takanori</creatorcontrib><title>RNA-sequencing reveals positional memory of multipotent mesenchymal stromal cells from oral and maxillofacial tissue transcriptomes</title><title>BMC genomics</title><addtitle>BMC GENOMICS</addtitle><addtitle>BMC Genomics</addtitle><description>BackgroundMultipotent mesenchymal stromal cells (MSCs) can be isolated from numerous tissues and are attractive candidates for therapeutic clinical applications due to their immunomodulatory and pro-regenerative capacity. Although the minimum criteria for defining MSCs have been defined, their characteristics are known to vary depending on their tissue of origin.ResultsWe isolated and characterized human MSCs from three different bones (ilium (I-MSCs), maxilla (Mx-MSCs) and mandible (Md-MSCs)) and proceeded with next generation RNA-sequencing. Furthermore, to investigate the gene expression profiles among other cell types, we obtained RNA-seq data of human embryonic stem cells (ESCs) and several types of MSCs (periodontal ligament-derived MSCs, bone marrow-derived MSCs, and ESCs-derived MSCs) from the Sequence Reads Archive and analyzed the transcriptome profile. We found that MSCs derived from tissues of the maxillofacial region, such as the jaw bone and periodontal ligament, were HOX-negative, while those derived from other tissues were HOX-positive. We also identified that MSX1, LHX8, and BARX1, an essential regulator of craniofacial development, were strongly expressed in maxillofacial tissue-derived MSCs. Although MSCs may be divided into two distinct groups, the cells originated from over the neck or not, on the basis of differences in gene expression profile, the expression patterns of all CD antigen genes were similar among different type of MSCs, except for ESCs.ConclusionsOur findings suggest that MSCs from different anatomical locations, despite meeting general characterization criteria, have remarkable differences in gene expression and positional memory. Although stromal cells from different anatomical sources are generally categorized as MSCs, their differentiation potential and biological functions vary. We suggested that MSCs may retain an original tissue memory about the developmental process, including gene expression profiles. This could have an important impact when choosing an appropriate cell source for regenerative therapy using MSCs.</description><subject>Analysis</subject><subject>Antigens</subject><subject>Archives &amp; records</subject><subject>Biomedical materials</subject><subject>Biotechnology &amp; Applied Microbiology</subject><subject>Bone marrow</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell cycle</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Craniofacial growth</subject><subject>Defects</subject><subject>Embryo cells</subject><subject>Embryonic stem cells</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation</subject><subject>Gene Regulatory Networks</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetics &amp; Heredity</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Homeodomain Proteins - genetics</subject><subject>HOX genes</subject><subject>Humans</subject><subject>Iliac bone</subject><subject>Ilium</subject><subject>Ilium - chemistry</subject><subject>Ilium - cytology</subject><subject>Immunomodulation</subject><subject>Jaw</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Ligaments</subject><subject>Mandible</subject><subject>Mandible - chemistry</subject><subject>Mandible - cytology</subject><subject>Maxilla</subject><subject>Maxilla - chemistry</subject><subject>Maxilla - cytology</subject><subject>Maxillofacial</subject><subject>Maxillofacial bone</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - chemistry</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchyme</subject><subject>Multipotent mesenchymal stromal cells</subject><subject>Organ Specificity</subject><subject>Periodontal ligament</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-sequencing</subject><subject>Science &amp; Technology</subject><subject>Scientific equipment industry</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Skin &amp; tissue grafts</subject><subject>Stem cells</subject><subject>Stromal cells</subject><subject>Therapeutic applications</subject><subject>Tissues</subject><subject>Whole Exome Sequencing</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEoqXwB1igSGxAKMVvO5tKoxGPkSqQCqwtx3GmrpJ4sJ3SWfPHuemUoYNYoCxs33znWPf4FsVzjE4xVuJtwkQJViGCKiQU4RV5UBxjJnFFsGAP7-2PiicpXSGEJWCPiyNKuMQE4-Pi58WnRZXc98mN1o_rMrprZ_pUbkLy2YfR9OXghhC3ZejKYeqz34TsxgzVBJLL7QBEyjHMq3U9SDs4lCHC2YxtOZgb3_ehM9ZDJfuUJlfmaMZko9_kAD5Pi0cd3Ome3a0nxbf3774uP1bnnz-slovzykokcyWRoQ0zHHNhubUt5V3TGtky6EXWrWpaqxrLKXGyNrWrayogmrruCGbMKEFPitXOtw3mSm-iH0zc6mC8vi2EuNYmZm97pznlqKkJJoYi5mpcU6Jka3DdNRQpasHrbOe1mZrBtRYigY4PTA__jP5Sr8O1lhQjJBUYvLoziAHST1kPPs0BmtGFKWnCsCBCYEkAffkXehWmCE8zU4RJRoH8Q60NNODHLsC9djbVC0EkZ4qq-drTf1DwtW7wNoyu81A_ELw-EACT3U1emyklvfpycciSHWtjSCm6bp8HRnoeWb0bWQ3vom9HVs_dvbif5F7ye0YBUDvgh2tCl6yHuXN7DCHEGeVMCtghtvTZzHO7DNOYQfrm_6X0F28aB-g</recordid><startdate>20200622</startdate><enddate>20200622</enddate><creator>Onizuka, Satoru</creator><creator>Yamazaki, Yasuharu</creator><creator>Park, Sung-Joon</creator><creator>Sugimoto, Takayuki</creator><creator>Sone, Yumiko</creator><creator>Sjoqvist, Sebastian</creator><creator>Usui, Michihiko</creator><creator>Takeda, Akira</creator><creator>Nakai, Kenta</creator><creator>Nakashima, Keisuke</creator><creator>Iwata, Takanori</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5208-1848</orcidid><orcidid>https://orcid.org/0000-0002-8721-8883</orcidid><orcidid>https://orcid.org/0000-0002-1774-9590</orcidid></search><sort><creationdate>20200622</creationdate><title>RNA-sequencing reveals positional memory of multipotent mesenchymal stromal cells from oral and maxillofacial tissue transcriptomes</title><author>Onizuka, Satoru ; Yamazaki, Yasuharu ; Park, Sung-Joon ; Sugimoto, Takayuki ; Sone, Yumiko ; Sjoqvist, Sebastian ; Usui, Michihiko ; Takeda, Akira ; Nakai, Kenta ; Nakashima, Keisuke ; Iwata, Takanori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c707t-70a3b4a5156c5ccd35fbda7d457179d8bdc8bc532e79a9e993602099f2144a863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Antigens</topic><topic>Archives &amp; records</topic><topic>Biomedical materials</topic><topic>Biotechnology &amp; Applied Microbiology</topic><topic>Bone marrow</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell cycle</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Craniofacial growth</topic><topic>Defects</topic><topic>Embryo cells</topic><topic>Embryonic stem cells</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation</topic><topic>Gene Regulatory Networks</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetics &amp; Heredity</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Homeodomain Proteins - genetics</topic><topic>HOX genes</topic><topic>Humans</topic><topic>Iliac bone</topic><topic>Ilium</topic><topic>Ilium - chemistry</topic><topic>Ilium - cytology</topic><topic>Immunomodulation</topic><topic>Jaw</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Ligaments</topic><topic>Mandible</topic><topic>Mandible - chemistry</topic><topic>Mandible - cytology</topic><topic>Maxilla</topic><topic>Maxilla - chemistry</topic><topic>Maxilla - cytology</topic><topic>Maxillofacial</topic><topic>Maxillofacial bone</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - chemistry</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchyme</topic><topic>Multipotent mesenchymal stromal cells</topic><topic>Organ Specificity</topic><topic>Periodontal ligament</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-sequencing</topic><topic>Science &amp; Technology</topic><topic>Scientific equipment industry</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Skin &amp; tissue grafts</topic><topic>Stem cells</topic><topic>Stromal cells</topic><topic>Therapeutic applications</topic><topic>Tissues</topic><topic>Whole Exome Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Onizuka, Satoru</creatorcontrib><creatorcontrib>Yamazaki, Yasuharu</creatorcontrib><creatorcontrib>Park, Sung-Joon</creatorcontrib><creatorcontrib>Sugimoto, Takayuki</creatorcontrib><creatorcontrib>Sone, Yumiko</creatorcontrib><creatorcontrib>Sjoqvist, Sebastian</creatorcontrib><creatorcontrib>Usui, Michihiko</creatorcontrib><creatorcontrib>Takeda, Akira</creatorcontrib><creatorcontrib>Nakai, Kenta</creatorcontrib><creatorcontrib>Nakashima, Keisuke</creatorcontrib><creatorcontrib>Iwata, Takanori</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onizuka, Satoru</au><au>Yamazaki, Yasuharu</au><au>Park, Sung-Joon</au><au>Sugimoto, Takayuki</au><au>Sone, Yumiko</au><au>Sjoqvist, Sebastian</au><au>Usui, Michihiko</au><au>Takeda, Akira</au><au>Nakai, Kenta</au><au>Nakashima, Keisuke</au><au>Iwata, Takanori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA-sequencing reveals positional memory of multipotent mesenchymal stromal cells from oral and maxillofacial tissue transcriptomes</atitle><jtitle>BMC genomics</jtitle><stitle>BMC GENOMICS</stitle><addtitle>BMC Genomics</addtitle><date>2020-06-22</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>417</spage><epage>417</epage><pages>417-417</pages><artnum>417</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>BackgroundMultipotent mesenchymal stromal cells (MSCs) can be isolated from numerous tissues and are attractive candidates for therapeutic clinical applications due to their immunomodulatory and pro-regenerative capacity. Although the minimum criteria for defining MSCs have been defined, their characteristics are known to vary depending on their tissue of origin.ResultsWe isolated and characterized human MSCs from three different bones (ilium (I-MSCs), maxilla (Mx-MSCs) and mandible (Md-MSCs)) and proceeded with next generation RNA-sequencing. Furthermore, to investigate the gene expression profiles among other cell types, we obtained RNA-seq data of human embryonic stem cells (ESCs) and several types of MSCs (periodontal ligament-derived MSCs, bone marrow-derived MSCs, and ESCs-derived MSCs) from the Sequence Reads Archive and analyzed the transcriptome profile. We found that MSCs derived from tissues of the maxillofacial region, such as the jaw bone and periodontal ligament, were HOX-negative, while those derived from other tissues were HOX-positive. We also identified that MSX1, LHX8, and BARX1, an essential regulator of craniofacial development, were strongly expressed in maxillofacial tissue-derived MSCs. Although MSCs may be divided into two distinct groups, the cells originated from over the neck or not, on the basis of differences in gene expression profile, the expression patterns of all CD antigen genes were similar among different type of MSCs, except for ESCs.ConclusionsOur findings suggest that MSCs from different anatomical locations, despite meeting general characterization criteria, have remarkable differences in gene expression and positional memory. Although stromal cells from different anatomical sources are generally categorized as MSCs, their differentiation potential and biological functions vary. We suggested that MSCs may retain an original tissue memory about the developmental process, including gene expression profiles. This could have an important impact when choosing an appropriate cell source for regenerative therapy using MSCs.</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>32571211</pmid><doi>10.1186/s12864-020-06825-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5208-1848</orcidid><orcidid>https://orcid.org/0000-0002-8721-8883</orcidid><orcidid>https://orcid.org/0000-0002-1774-9590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2020-06, Vol.21 (1), p.417-417, Article 417
issn 1471-2164
1471-2164
language eng
recordid cdi_webofscience_primary_000543547600004CitationCount
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerNature Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Antigens
Archives & records
Biomedical materials
Biotechnology & Applied Microbiology
Bone marrow
Cell adhesion & migration
Cell cycle
Cell Differentiation
Cell Proliferation
Cells, Cultured
Craniofacial growth
Defects
Embryo cells
Embryonic stem cells
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation
Gene Regulatory Networks
Gene sequencing
Genes
Genetics & Heredity
Genomics
Health aspects
High-Throughput Nucleotide Sequencing
Homeodomain Proteins - genetics
HOX genes
Humans
Iliac bone
Ilium
Ilium - chemistry
Ilium - cytology
Immunomodulation
Jaw
Life Sciences & Biomedicine
Ligaments
Mandible
Mandible - chemistry
Mandible - cytology
Maxilla
Maxilla - chemistry
Maxilla - cytology
Maxillofacial
Maxillofacial bone
Mesenchymal stem cells
Mesenchymal Stem Cells - chemistry
Mesenchymal Stem Cells - cytology
Mesenchyme
Multipotent mesenchymal stromal cells
Organ Specificity
Periodontal ligament
Ribonucleic acid
RNA
RNA-sequencing
Science & Technology
Scientific equipment industry
Sequence Analysis, RNA - methods
Skin & tissue grafts
Stem cells
Stromal cells
Therapeutic applications
Tissues
Whole Exome Sequencing
title RNA-sequencing reveals positional memory of multipotent mesenchymal stromal cells from oral and maxillofacial tissue transcriptomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA-sequencing%20reveals%20positional%20memory%20of%20multipotent%20mesenchymal%20stromal%20cells%20from%20oral%20and%20maxillofacial%20tissue%20transcriptomes&rft.jtitle=BMC%20genomics&rft.au=Onizuka,%20Satoru&rft.date=2020-06-22&rft.volume=21&rft.issue=1&rft.spage=417&rft.epage=417&rft.pages=417-417&rft.artnum=417&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-020-06825-2&rft_dat=%3Cgale_webof%3EA627548388%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424743626&rft_id=info:pmid/32571211&rft_galeid=A627548388&rft_doaj_id=oai_doaj_org_article_5350b9212a304e9193287da19fb3083c&rfr_iscdi=true