Auxiliary Vehicle Positioning Based on Robust DOA Estimation With Unknown Mutual Coupling

As an important branch of the Internet of Vehicles (IoV), vehicle positioning has drawn extensive attention. Traditional positioning systems based on a global positioning system incur long delays, and may fail due to obstructions. In this article, we propose an auxiliary positioning architecture, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2020-06, Vol.7 (6), p.5521-5532
Hauptverfasser: Wen, Fangqing, Wang, Juan, Shi, Junpeng, Gui, Guan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5532
container_issue 6
container_start_page 5521
container_title IEEE internet of things journal
container_volume 7
creator Wen, Fangqing
Wang, Juan
Shi, Junpeng
Gui, Guan
description As an important branch of the Internet of Vehicles (IoV), vehicle positioning has drawn extensive attention. Traditional positioning systems based on a global positioning system incur long delays, and may fail due to obstructions. In this article, we propose an auxiliary positioning architecture, whose core is to estimate the direction of arrival (DOA) of signals from landmarks, such as wireless access points, utilizing a sensor array in the vehicle. Due to space limitations, the array may be placed in an arbitrary geometry and may suffer from unknown mutual coupling. Most algorithms are only effective for sensor arrays with special geometries, e.g., a uniform linear array or rectangular array. To tackle this problem, an improved multiple signal classification algorithm is derived, which is superior to the state-of-the-art iterative method from the perspective of computational complexity. Detailed analysis concerning identifiability, computational complexity, and Cramér-Rao bounds are given. The simulation results verify the improvement of the proposed DOA estimation algorithm. The proposed architecture can obtain robust self-localization with existing vehicular ad hoc networks, and it can collaborate with other positioning systems to provide a safe driving environment.
doi_str_mv 10.1109/JIOT.2020.2979771
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000543157700065CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9031722</ieee_id><sourcerecordid>2413217185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-ee8d063a8314f8d54de94ae43bcbbf190df1f0ce694e71fac5bdf9eeec5cc36c3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRSMEEhXwAYiNJZaoxY8kjpelFCgqKkI8xCpKnDF1CXaJHZX-PQ6tEEtWcxf3zGhOFB0TPCAEi_PbyexxQDHFAyq44JzsRD3KKO_HaUp3_-T96Mi5BcY4YAkRaS96HbZfutZFs0bPMNeyBnRvnfbaGm3e0EXhoELWoAdbts6jy9kQjZ3XH0XXQC_az9GTeTd2ZdBd69uiRiPbLuvAHkZ7qqgdHG3nQfR0NX4c3fSns-vJaDjtS8ZS3wfIKpyyImMkVlmVxBWIuICYlbIsFRG4UkRhCamIgRNVyKSslAAAmUjJUskOotPN3mVjP1twPl_YtjHhZE5jwijhJEtCi2xasrHONaDyZRO-aNY5wXknMe8k5p3EfCsxMGcbZgWlVU5qMBJ-uWAxiRlJOA8p7S5k_2-PtP8xGGQZH9CTDarDX7-IwIxwStk3thWPog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413217185</pqid></control><display><type>article</type><title>Auxiliary Vehicle Positioning Based on Robust DOA Estimation With Unknown Mutual Coupling</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>IEEE Electronic Library (IEL)</source><creator>Wen, Fangqing ; Wang, Juan ; Shi, Junpeng ; Gui, Guan</creator><creatorcontrib>Wen, Fangqing ; Wang, Juan ; Shi, Junpeng ; Gui, Guan</creatorcontrib><description>As an important branch of the Internet of Vehicles (IoV), vehicle positioning has drawn extensive attention. Traditional positioning systems based on a global positioning system incur long delays, and may fail due to obstructions. In this article, we propose an auxiliary positioning architecture, whose core is to estimate the direction of arrival (DOA) of signals from landmarks, such as wireless access points, utilizing a sensor array in the vehicle. Due to space limitations, the array may be placed in an arbitrary geometry and may suffer from unknown mutual coupling. Most algorithms are only effective for sensor arrays with special geometries, e.g., a uniform linear array or rectangular array. To tackle this problem, an improved multiple signal classification algorithm is derived, which is superior to the state-of-the-art iterative method from the perspective of computational complexity. Detailed analysis concerning identifiability, computational complexity, and Cramér-Rao bounds are given. The simulation results verify the improvement of the proposed DOA estimation algorithm. The proposed architecture can obtain robust self-localization with existing vehicular ad hoc networks, and it can collaborate with other positioning systems to provide a safe driving environment.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.2979771</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Antenna arrays ; Arbitrary geometry ; Complexity ; Computer architecture ; Computer Science ; Computer Science, Information Systems ; Computer simulation ; Direction of arrival ; direction-of-arrival (DOA) estimation ; Direction-of-arrival estimation ; Engineering ; Engineering, Electrical &amp; Electronic ; Estimation ; Geometry ; Global positioning systems ; GPS ; Internet of Things ; Internet of Vehicles ; Internet of Vehicles (IoV) ; Iterative methods ; Linear arrays ; Mobile ad hoc networks ; Mutual coupling ; Obstructions ; Robustness ; Science &amp; Technology ; sensor array ; Sensor arrays ; Signal classification ; Technology ; Telecommunications ; vehicle positioning ; Wireless communication ; Wireless communication systems</subject><ispartof>IEEE internet of things journal, 2020-06, Vol.7 (6), p.5521-5532</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>48</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000543157700065</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c336t-ee8d063a8314f8d54de94ae43bcbbf190df1f0ce694e71fac5bdf9eeec5cc36c3</citedby><cites>FETCH-LOGICAL-c336t-ee8d063a8314f8d54de94ae43bcbbf190df1f0ce694e71fac5bdf9eeec5cc36c3</cites><orcidid>0000-0002-9910-0663 ; 0000-0003-4291-177X ; 0000-0003-3888-2881 ; 0000-0001-6241-8275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9031722$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,798,27931,27932,28255,54765</link.rule.ids></links><search><creatorcontrib>Wen, Fangqing</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Shi, Junpeng</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><title>Auxiliary Vehicle Positioning Based on Robust DOA Estimation With Unknown Mutual Coupling</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><addtitle>IEEE INTERNET THINGS</addtitle><description>As an important branch of the Internet of Vehicles (IoV), vehicle positioning has drawn extensive attention. Traditional positioning systems based on a global positioning system incur long delays, and may fail due to obstructions. In this article, we propose an auxiliary positioning architecture, whose core is to estimate the direction of arrival (DOA) of signals from landmarks, such as wireless access points, utilizing a sensor array in the vehicle. Due to space limitations, the array may be placed in an arbitrary geometry and may suffer from unknown mutual coupling. Most algorithms are only effective for sensor arrays with special geometries, e.g., a uniform linear array or rectangular array. To tackle this problem, an improved multiple signal classification algorithm is derived, which is superior to the state-of-the-art iterative method from the perspective of computational complexity. Detailed analysis concerning identifiability, computational complexity, and Cramér-Rao bounds are given. The simulation results verify the improvement of the proposed DOA estimation algorithm. The proposed architecture can obtain robust self-localization with existing vehicular ad hoc networks, and it can collaborate with other positioning systems to provide a safe driving environment.</description><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Arbitrary geometry</subject><subject>Complexity</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Computer simulation</subject><subject>Direction of arrival</subject><subject>direction-of-arrival (DOA) estimation</subject><subject>Direction-of-arrival estimation</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Estimation</subject><subject>Geometry</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Internet of Things</subject><subject>Internet of Vehicles</subject><subject>Internet of Vehicles (IoV)</subject><subject>Iterative methods</subject><subject>Linear arrays</subject><subject>Mobile ad hoc networks</subject><subject>Mutual coupling</subject><subject>Obstructions</subject><subject>Robustness</subject><subject>Science &amp; Technology</subject><subject>sensor array</subject><subject>Sensor arrays</subject><subject>Signal classification</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>vehicle positioning</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkMtOwzAQRSMEEhXwAYiNJZaoxY8kjpelFCgqKkI8xCpKnDF1CXaJHZX-PQ6tEEtWcxf3zGhOFB0TPCAEi_PbyexxQDHFAyq44JzsRD3KKO_HaUp3_-T96Mi5BcY4YAkRaS96HbZfutZFs0bPMNeyBnRvnfbaGm3e0EXhoELWoAdbts6jy9kQjZ3XH0XXQC_az9GTeTd2ZdBd69uiRiPbLuvAHkZ7qqgdHG3nQfR0NX4c3fSns-vJaDjtS8ZS3wfIKpyyImMkVlmVxBWIuICYlbIsFRG4UkRhCamIgRNVyKSslAAAmUjJUskOotPN3mVjP1twPl_YtjHhZE5jwijhJEtCi2xasrHONaDyZRO-aNY5wXknMe8k5p3EfCsxMGcbZgWlVU5qMBJ-uWAxiRlJOA8p7S5k_2-PtP8xGGQZH9CTDarDX7-IwIxwStk3thWPog</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Wen, Fangqing</creator><creator>Wang, Juan</creator><creator>Shi, Junpeng</creator><creator>Gui, Guan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9910-0663</orcidid><orcidid>https://orcid.org/0000-0003-4291-177X</orcidid><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid><orcidid>https://orcid.org/0000-0001-6241-8275</orcidid></search><sort><creationdate>20200601</creationdate><title>Auxiliary Vehicle Positioning Based on Robust DOA Estimation With Unknown Mutual Coupling</title><author>Wen, Fangqing ; Wang, Juan ; Shi, Junpeng ; Gui, Guan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-ee8d063a8314f8d54de94ae43bcbbf190df1f0ce694e71fac5bdf9eeec5cc36c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Arbitrary geometry</topic><topic>Complexity</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Computer simulation</topic><topic>Direction of arrival</topic><topic>direction-of-arrival (DOA) estimation</topic><topic>Direction-of-arrival estimation</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Estimation</topic><topic>Geometry</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Internet of Things</topic><topic>Internet of Vehicles</topic><topic>Internet of Vehicles (IoV)</topic><topic>Iterative methods</topic><topic>Linear arrays</topic><topic>Mobile ad hoc networks</topic><topic>Mutual coupling</topic><topic>Obstructions</topic><topic>Robustness</topic><topic>Science &amp; Technology</topic><topic>sensor array</topic><topic>Sensor arrays</topic><topic>Signal classification</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>vehicle positioning</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Wen, Fangqing</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Shi, Junpeng</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Fangqing</au><au>Wang, Juan</au><au>Shi, Junpeng</au><au>Gui, Guan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auxiliary Vehicle Positioning Based on Robust DOA Estimation With Unknown Mutual Coupling</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><stitle>IEEE INTERNET THINGS</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>7</volume><issue>6</issue><spage>5521</spage><epage>5532</epage><pages>5521-5532</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>As an important branch of the Internet of Vehicles (IoV), vehicle positioning has drawn extensive attention. Traditional positioning systems based on a global positioning system incur long delays, and may fail due to obstructions. In this article, we propose an auxiliary positioning architecture, whose core is to estimate the direction of arrival (DOA) of signals from landmarks, such as wireless access points, utilizing a sensor array in the vehicle. Due to space limitations, the array may be placed in an arbitrary geometry and may suffer from unknown mutual coupling. Most algorithms are only effective for sensor arrays with special geometries, e.g., a uniform linear array or rectangular array. To tackle this problem, an improved multiple signal classification algorithm is derived, which is superior to the state-of-the-art iterative method from the perspective of computational complexity. Detailed analysis concerning identifiability, computational complexity, and Cramér-Rao bounds are given. The simulation results verify the improvement of the proposed DOA estimation algorithm. The proposed architecture can obtain robust self-localization with existing vehicular ad hoc networks, and it can collaborate with other positioning systems to provide a safe driving environment.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.2979771</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9910-0663</orcidid><orcidid>https://orcid.org/0000-0003-4291-177X</orcidid><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid><orcidid>https://orcid.org/0000-0001-6241-8275</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2020-06, Vol.7 (6), p.5521-5532
issn 2327-4662
2327-4662
language eng
recordid cdi_webofscience_primary_000543157700065CitationCount
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; IEEE Electronic Library (IEL)
subjects Algorithms
Antenna arrays
Arbitrary geometry
Complexity
Computer architecture
Computer Science
Computer Science, Information Systems
Computer simulation
Direction of arrival
direction-of-arrival (DOA) estimation
Direction-of-arrival estimation
Engineering
Engineering, Electrical & Electronic
Estimation
Geometry
Global positioning systems
GPS
Internet of Things
Internet of Vehicles
Internet of Vehicles (IoV)
Iterative methods
Linear arrays
Mobile ad hoc networks
Mutual coupling
Obstructions
Robustness
Science & Technology
sensor array
Sensor arrays
Signal classification
Technology
Telecommunications
vehicle positioning
Wireless communication
Wireless communication systems
title Auxiliary Vehicle Positioning Based on Robust DOA Estimation With Unknown Mutual Coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-09T12%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auxiliary%20Vehicle%20Positioning%20Based%20on%20Robust%20DOA%20Estimation%20With%20Unknown%20Mutual%20Coupling&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Wen,%20Fangqing&rft.date=2020-06-01&rft.volume=7&rft.issue=6&rft.spage=5521&rft.epage=5532&rft.pages=5521-5532&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.2979771&rft_dat=%3Cproquest_webof%3E2413217185%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413217185&rft_id=info:pmid/&rft_ieee_id=9031722&rfr_iscdi=true