Prognostic alternative splicing regulatory network of splicing events in acute myeloid leukemia patients based on SpliceSeq data from 136 cases

This study aimed to create prognostic signatures to predict AML patients' survival using alternative splicing (AS) events. The AS data, RNA sequencing data, and the survival statistics of 136 AML patients were obtained from The Cancer Genome Atlas (TGGA) and TCGA SpliceSeq databases. Total 34,9...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neoplasma 2020-01, Vol.67 (3), p.623-635
Hauptverfasser: Xie, Z. C., Gao, L., Chen, G., Ma, J., Yang, L. H., He, R. Q., Li, M. W., Cai, K. T., Li, T. T., Peng, Z. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 635
container_issue 3
container_start_page 623
container_title Neoplasma
container_volume 67
creator Xie, Z. C.
Gao, L.
Chen, G.
Ma, J.
Yang, L. H.
He, R. Q.
Li, M. W.
Cai, K. T.
Li, T. T.
Peng, Z. G.
description This study aimed to create prognostic signatures to predict AML patients' survival using alternative splicing (AS) events. The AS data, RNA sequencing data, and the survival statistics of 136 AML patients were obtained from The Cancer Genome Atlas (TGGA) and TCGA SpliceSeq databases. Total 34,984 AS events generated from 8,656 genes, 2,583 of which were survival-associated AS events, were identified using univariate Cox regression. The prognostic models constructed using independent survival-associated AS events revealed that low-risk splicing better predicted patients' survival. ROC analysis indicated that the predictive efficacy of the alternate terminator model was best in the area under the curve at 0.781. Enrichment analysis revealed several important genes (TP53, BCL2, AURKB, PPP2R1B, FOS, and BIRC5) and pathways, such as the protein processing pathway in the endoplasmic reticulum, RNA transport pathway, and HTLV-I infection pathway. The splicing network of splicing events and factors revealed interesting interactions, such as the positive correlation between HNRNPH3 and CALHM2-13010-AT, which may indicate the potential splicing regulatory mechanism. Taken together, survival-associated splicing events and the prognostic signatures for predicting survival can help provide an overview of splicing in AML patients and facilitate clinical practice. The splicing regulatory network may improve the understanding of spliceosomes in AML.
doi_str_mv 10.4149/neo_2020_190917N922
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_webofscience_primary_000542668500019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353010995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-175c2b0f201376e3956a856bfdc8847b0c7652561d989a197a7c9a5cbd5bcd723</originalsourceid><addsrcrecordid>eNqNkctq3DAUhkVJaIZJnqBQtCwEt7pYkrUsQ3OB0AQmXRtZPh7U2NJEkhPmKfLKVTJpuuki2kig7zsH_h-hT5R8rWmtv3kILSOMtFQTTdVPzdgHtKCcN1XNqTpAC0JYUzHZiCN0ktJvUo4UhDH6ER1xRriWnC7Q000MGx9SdhabMUP0JrsHwGk7Ouv8BkfYzKPJIe6wh_wY4h0Ow79veACfE3YeGztnwNMOxuB6PMJ8B5MzeFvmvSCdSdDj4PH62YU13OPeZIOHGCZMucS2AOkYHQ5mTHDyei_Rr7Mft6uL6ur6_HL1_aqyXJBcUSUs68jACOVKAtdCmkbIbuht09SqI1ZJwYSkvW60oVoZZbURtutFZ3vF-BJ92c_dxnA_Q8rt5JKFcTQl2Tm1jAtOKNFaFJTvURtDShGGdhvdZOKupaR9LqP9TxnF-vy6YO4m6N-cv9EXoNkDj9CFIdmSkoU3rLQlaiZLfeVF9crlkmPwqzD7XNTT96v8DwkSqPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353010995</pqid></control><display><type>article</type><title>Prognostic alternative splicing regulatory network of splicing events in acute myeloid leukemia patients based on SpliceSeq data from 136 cases</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Xie, Z. C. ; Gao, L. ; Chen, G. ; Ma, J. ; Yang, L. H. ; He, R. Q. ; Li, M. W. ; Cai, K. T. ; Li, T. T. ; Peng, Z. G.</creator><creatorcontrib>Xie, Z. C. ; Gao, L. ; Chen, G. ; Ma, J. ; Yang, L. H. ; He, R. Q. ; Li, M. W. ; Cai, K. T. ; Li, T. T. ; Peng, Z. G.</creatorcontrib><description>This study aimed to create prognostic signatures to predict AML patients' survival using alternative splicing (AS) events. The AS data, RNA sequencing data, and the survival statistics of 136 AML patients were obtained from The Cancer Genome Atlas (TGGA) and TCGA SpliceSeq databases. Total 34,984 AS events generated from 8,656 genes, 2,583 of which were survival-associated AS events, were identified using univariate Cox regression. The prognostic models constructed using independent survival-associated AS events revealed that low-risk splicing better predicted patients' survival. ROC analysis indicated that the predictive efficacy of the alternate terminator model was best in the area under the curve at 0.781. Enrichment analysis revealed several important genes (TP53, BCL2, AURKB, PPP2R1B, FOS, and BIRC5) and pathways, such as the protein processing pathway in the endoplasmic reticulum, RNA transport pathway, and HTLV-I infection pathway. The splicing network of splicing events and factors revealed interesting interactions, such as the positive correlation between HNRNPH3 and CALHM2-13010-AT, which may indicate the potential splicing regulatory mechanism. Taken together, survival-associated splicing events and the prognostic signatures for predicting survival can help provide an overview of splicing in AML patients and facilitate clinical practice. The splicing regulatory network may improve the understanding of spliceosomes in AML.</description><identifier>ISSN: 0028-2685</identifier><identifier>ISSN: 1338-4317</identifier><identifier>EISSN: 1338-4317</identifier><identifier>DOI: 10.4149/neo_2020_190917N922</identifier><identifier>PMID: 32039631</identifier><language>eng</language><publisher>BRATISLAVA: Aepress Sro</publisher><subject>Life Sciences &amp; Biomedicine ; Oncology ; Science &amp; Technology</subject><ispartof>Neoplasma, 2020-01, Vol.67 (3), p.623-635</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000542668500019</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c350t-175c2b0f201376e3956a856bfdc8847b0c7652561d989a197a7c9a5cbd5bcd723</citedby><cites>FETCH-LOGICAL-c350t-175c2b0f201376e3956a856bfdc8847b0c7652561d989a197a7c9a5cbd5bcd723</cites><orcidid>0000-0002-4864-1451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,28255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32039631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Z. C.</creatorcontrib><creatorcontrib>Gao, L.</creatorcontrib><creatorcontrib>Chen, G.</creatorcontrib><creatorcontrib>Ma, J.</creatorcontrib><creatorcontrib>Yang, L. H.</creatorcontrib><creatorcontrib>He, R. Q.</creatorcontrib><creatorcontrib>Li, M. W.</creatorcontrib><creatorcontrib>Cai, K. T.</creatorcontrib><creatorcontrib>Li, T. T.</creatorcontrib><creatorcontrib>Peng, Z. G.</creatorcontrib><title>Prognostic alternative splicing regulatory network of splicing events in acute myeloid leukemia patients based on SpliceSeq data from 136 cases</title><title>Neoplasma</title><addtitle>NEOPLASMA</addtitle><addtitle>Neoplasma</addtitle><description>This study aimed to create prognostic signatures to predict AML patients' survival using alternative splicing (AS) events. The AS data, RNA sequencing data, and the survival statistics of 136 AML patients were obtained from The Cancer Genome Atlas (TGGA) and TCGA SpliceSeq databases. Total 34,984 AS events generated from 8,656 genes, 2,583 of which were survival-associated AS events, were identified using univariate Cox regression. The prognostic models constructed using independent survival-associated AS events revealed that low-risk splicing better predicted patients' survival. ROC analysis indicated that the predictive efficacy of the alternate terminator model was best in the area under the curve at 0.781. Enrichment analysis revealed several important genes (TP53, BCL2, AURKB, PPP2R1B, FOS, and BIRC5) and pathways, such as the protein processing pathway in the endoplasmic reticulum, RNA transport pathway, and HTLV-I infection pathway. The splicing network of splicing events and factors revealed interesting interactions, such as the positive correlation between HNRNPH3 and CALHM2-13010-AT, which may indicate the potential splicing regulatory mechanism. Taken together, survival-associated splicing events and the prognostic signatures for predicting survival can help provide an overview of splicing in AML patients and facilitate clinical practice. The splicing regulatory network may improve the understanding of spliceosomes in AML.</description><subject>Life Sciences &amp; Biomedicine</subject><subject>Oncology</subject><subject>Science &amp; Technology</subject><issn>0028-2685</issn><issn>1338-4317</issn><issn>1338-4317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkctq3DAUhkVJaIZJnqBQtCwEt7pYkrUsQ3OB0AQmXRtZPh7U2NJEkhPmKfLKVTJpuuki2kig7zsH_h-hT5R8rWmtv3kILSOMtFQTTdVPzdgHtKCcN1XNqTpAC0JYUzHZiCN0ktJvUo4UhDH6ER1xRriWnC7Q000MGx9SdhabMUP0JrsHwGk7Ouv8BkfYzKPJIe6wh_wY4h0Ow79veACfE3YeGztnwNMOxuB6PMJ8B5MzeFvmvSCdSdDj4PH62YU13OPeZIOHGCZMucS2AOkYHQ5mTHDyei_Rr7Mft6uL6ur6_HL1_aqyXJBcUSUs68jACOVKAtdCmkbIbuht09SqI1ZJwYSkvW60oVoZZbURtutFZ3vF-BJ92c_dxnA_Q8rt5JKFcTQl2Tm1jAtOKNFaFJTvURtDShGGdhvdZOKupaR9LqP9TxnF-vy6YO4m6N-cv9EXoNkDj9CFIdmSkoU3rLQlaiZLfeVF9crlkmPwqzD7XNTT96v8DwkSqPw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Xie, Z. C.</creator><creator>Gao, L.</creator><creator>Chen, G.</creator><creator>Ma, J.</creator><creator>Yang, L. H.</creator><creator>He, R. Q.</creator><creator>Li, M. W.</creator><creator>Cai, K. T.</creator><creator>Li, T. T.</creator><creator>Peng, Z. G.</creator><general>Aepress Sro</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4864-1451</orcidid></search><sort><creationdate>20200101</creationdate><title>Prognostic alternative splicing regulatory network of splicing events in acute myeloid leukemia patients based on SpliceSeq data from 136 cases</title><author>Xie, Z. C. ; Gao, L. ; Chen, G. ; Ma, J. ; Yang, L. H. ; He, R. Q. ; Li, M. W. ; Cai, K. T. ; Li, T. T. ; Peng, Z. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-175c2b0f201376e3956a856bfdc8847b0c7652561d989a197a7c9a5cbd5bcd723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Life Sciences &amp; Biomedicine</topic><topic>Oncology</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Z. C.</creatorcontrib><creatorcontrib>Gao, L.</creatorcontrib><creatorcontrib>Chen, G.</creatorcontrib><creatorcontrib>Ma, J.</creatorcontrib><creatorcontrib>Yang, L. H.</creatorcontrib><creatorcontrib>He, R. Q.</creatorcontrib><creatorcontrib>Li, M. W.</creatorcontrib><creatorcontrib>Cai, K. T.</creatorcontrib><creatorcontrib>Li, T. T.</creatorcontrib><creatorcontrib>Peng, Z. G.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neoplasma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Z. C.</au><au>Gao, L.</au><au>Chen, G.</au><au>Ma, J.</au><au>Yang, L. H.</au><au>He, R. Q.</au><au>Li, M. W.</au><au>Cai, K. T.</au><au>Li, T. T.</au><au>Peng, Z. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prognostic alternative splicing regulatory network of splicing events in acute myeloid leukemia patients based on SpliceSeq data from 136 cases</atitle><jtitle>Neoplasma</jtitle><stitle>NEOPLASMA</stitle><addtitle>Neoplasma</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>67</volume><issue>3</issue><spage>623</spage><epage>635</epage><pages>623-635</pages><issn>0028-2685</issn><issn>1338-4317</issn><eissn>1338-4317</eissn><abstract>This study aimed to create prognostic signatures to predict AML patients' survival using alternative splicing (AS) events. The AS data, RNA sequencing data, and the survival statistics of 136 AML patients were obtained from The Cancer Genome Atlas (TGGA) and TCGA SpliceSeq databases. Total 34,984 AS events generated from 8,656 genes, 2,583 of which were survival-associated AS events, were identified using univariate Cox regression. The prognostic models constructed using independent survival-associated AS events revealed that low-risk splicing better predicted patients' survival. ROC analysis indicated that the predictive efficacy of the alternate terminator model was best in the area under the curve at 0.781. Enrichment analysis revealed several important genes (TP53, BCL2, AURKB, PPP2R1B, FOS, and BIRC5) and pathways, such as the protein processing pathway in the endoplasmic reticulum, RNA transport pathway, and HTLV-I infection pathway. The splicing network of splicing events and factors revealed interesting interactions, such as the positive correlation between HNRNPH3 and CALHM2-13010-AT, which may indicate the potential splicing regulatory mechanism. Taken together, survival-associated splicing events and the prognostic signatures for predicting survival can help provide an overview of splicing in AML patients and facilitate clinical practice. The splicing regulatory network may improve the understanding of spliceosomes in AML.</abstract><cop>BRATISLAVA</cop><pub>Aepress Sro</pub><pmid>32039631</pmid><doi>10.4149/neo_2020_190917N922</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4864-1451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-2685
ispartof Neoplasma, 2020-01, Vol.67 (3), p.623-635
issn 0028-2685
1338-4317
1338-4317
language eng
recordid cdi_webofscience_primary_000542668500019
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Life Sciences & Biomedicine
Oncology
Science & Technology
title Prognostic alternative splicing regulatory network of splicing events in acute myeloid leukemia patients based on SpliceSeq data from 136 cases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T19%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prognostic%20alternative%20splicing%20regulatory%20network%20of%20splicing%20events%20in%20acute%20myeloid%20leukemia%20patients%20based%20on%20SpliceSeq%20data%20from%20136%20cases&rft.jtitle=Neoplasma&rft.au=Xie,%20Z.%20C.&rft.date=2020-01-01&rft.volume=67&rft.issue=3&rft.spage=623&rft.epage=635&rft.pages=623-635&rft.issn=0028-2685&rft.eissn=1338-4317&rft_id=info:doi/10.4149/neo_2020_190917N922&rft_dat=%3Cproquest_cross%3E2353010995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353010995&rft_id=info:pmid/32039631&rfr_iscdi=true