The matching augmentation problem: a 7/4-approximation algorithm

We present a 7/4 approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. We first present a reduction of any gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2020-07, Vol.182 (1-2), p.315-354
Hauptverfasser: Cheriyan, J., Dippel, J., Grandoni, F., Khan, A., Narayan, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a 7/4 approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. We first present a reduction of any givenMAP instance to a collection of well-structured MAP instances such that the approximation guarantee is preserved. Then we present a 7/4 approximation algorithm for awell-structuredMAPinstance. The algorithm starts with amin-cost 2-edge cover and then applies ear-augmentation steps. We analyze the cost of the ear-augmentations using an approach similar to the one proposed by Vempala and Vetta for the (unweighted) min-size 2-ECSS problem (in: Jansen and Khuller (eds.) ApproximationAlgorithms forCombinatorialOptimization, Third InternationalWorkshop, APPROX2000, Proceedings, LNCS1913, pp.262-273, Springer, Berlin, 2000).
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-019-01394-z