Recent advances in N-heterocyclic carbene-based radical catalysis

In nature, a number of enzymes use thiamine diphosphate as a coenzyme to catalyze the pyruvate decarboxylation. The resultant enamine, a so-called "Breslow intermediate," is known to perform single electron transfer to various electron acceptors. Inspired by this enzymatic catalysis, N-het...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2020-05, Vol.11 (22), p.563-5636
Hauptverfasser: Ishii, Takuya, Nagao, Kazunori, Ohmiya, Hirohisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In nature, a number of enzymes use thiamine diphosphate as a coenzyme to catalyze the pyruvate decarboxylation. The resultant enamine, a so-called "Breslow intermediate," is known to perform single electron transfer to various electron acceptors. Inspired by this enzymatic catalysis, N-heterocyclic carbene (NHC)-catalyzed radical reactions have been developed. This minireview highlights the recent progress and developments in NHC-based radical catalysis. This minireview is categorized according to the reaction types; oxidation type reaction and carbon-carbon bond formation through single electron transfer/radical-radical coupling. This minireview examines the history and state-of-the-art of the N-heterocyclic carbene-based radical catalysis.
ISSN:2041-6520
2041-6539
DOI:10.1039/d0sc01538e