Improving the mechanical behavior of reduced graphene oxide/hydroxyapatite nanocomposites using gas injection into powders synthesis autoclave
In this study, we show the synthesis of reduced graphene oxide/hydroxyapatite (rGO/HA) composites using a hydrothermal autoclave with argon-15% hydrogen gas injection. This both increases the hydrothermal pressure and uses hydrogen as a reductive agent in the process. The synthesized powders were th...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-05, Vol.10 (1), p.8552-8552, Article 8552 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8552 |
---|---|
container_issue | 1 |
container_start_page | 8552 |
container_title | Scientific reports |
container_volume | 10 |
creator | Nosrati, Hassan Sarraf-Mamoory, Rasoul Le, Dang Quang Svend Zolfaghari Emameh, Reza Canillas Perez, Maria Bünger, Cody Eric |
description | In this study, we show the synthesis of reduced graphene oxide/hydroxyapatite (rGO/HA) composites using a hydrothermal autoclave with argon-15% hydrogen gas injection. This both increases the hydrothermal pressure and uses hydrogen as a reductive agent in the process. The synthesized powders were then consolidated with spark plasma sintering method. The analysis of the consolidated samples included Vickers Indentation technique and cell viability. The results showed that injected gases in the autoclave produced powders with a higher crystallinity compared to synthesis without the gases. Also, hydrogen gas led to increased reduction of GO. The microscopic analysis confirmed existing graphene sheets with folding and wrinkling in the powders and indicated that various preferential directions played a role in the growth of hydroxyapatite crystals. The results showed that in general, graphene sheets increased the mechanical properties of HA. In the samples synthesized with injected gases, this increase was more significant. Interface analysis results indicate that reduced graphene oxide (rGO)/HA interface is likely coherent. These nanocomposites were biocompatible and showed some hydrophobicity compared to pure HA. |
doi_str_mv | 10.1038/s41598-020-64928-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000540510300055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405840902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c2edb80ab3e45335961e686e7d68ac8ad9787288f287f35e49dc021eaafe04db3</originalsourceid><addsrcrecordid>eNqNks-O1SAUxhujcSbjvIALQ-LGxNShQFu6MTE3_plkEje6JhROb7lpoQK9M30Jn1lqx-vowtgNh_D7Ps7ha5Y9L_CbAlN-FVhRNjzHBOcVawjPl0fZOcGszAkl5PGD-iy7DOGA01eShhXN0-yMEsZYVVfn2ffrcfLuaOwexR7QCKqX1ig5oBZ6eTTOI9chD3pWoNHey6kHC8jdGQ1X_aK9u1vkJKOJgKy0TrlxciHtAprD6rqXARl7ABWNs6mKDk3uVoMPKCw23RlMQHKOTg3yCM-yJ50cAlzerxfZ1w_vv-w-5TefP17v3t3kitUs5oqAbjmWLQVWUlo2VQEVr6DWFZeKS93UvCacd4TXHS2BNVphUoCUHWCmW3qRvd18p7kdQSuw0ctBTN6M0i_CSSP-PLGmF3t3FHV6ubpqksGrewPvvs0QohhNUDAM0oKbgyAMVxTXtGYJffkXenCzt2m8lSo5ww0miSIbpbwLwUN3aqbAYk1cbImLlLj4mbhYkujFwzFOkl_5JoBvwC20rgvKgFVwwtZfInWQ3Neq3Jko15R2brYxSV__vzTRdKNDIuwe_O8h_9H_D_3F3Uc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405840902</pqid></control><display><type>article</type><title>Improving the mechanical behavior of reduced graphene oxide/hydroxyapatite nanocomposites using gas injection into powders synthesis autoclave</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Nosrati, Hassan ; Sarraf-Mamoory, Rasoul ; Le, Dang Quang Svend ; Zolfaghari Emameh, Reza ; Canillas Perez, Maria ; Bünger, Cody Eric</creator><creatorcontrib>Nosrati, Hassan ; Sarraf-Mamoory, Rasoul ; Le, Dang Quang Svend ; Zolfaghari Emameh, Reza ; Canillas Perez, Maria ; Bünger, Cody Eric</creatorcontrib><description>In this study, we show the synthesis of reduced graphene oxide/hydroxyapatite (rGO/HA) composites using a hydrothermal autoclave with argon-15% hydrogen gas injection. This both increases the hydrothermal pressure and uses hydrogen as a reductive agent in the process. The synthesized powders were then consolidated with spark plasma sintering method. The analysis of the consolidated samples included Vickers Indentation technique and cell viability. The results showed that injected gases in the autoclave produced powders with a higher crystallinity compared to synthesis without the gases. Also, hydrogen gas led to increased reduction of GO. The microscopic analysis confirmed existing graphene sheets with folding and wrinkling in the powders and indicated that various preferential directions played a role in the growth of hydroxyapatite crystals. The results showed that in general, graphene sheets increased the mechanical properties of HA. In the samples synthesized with injected gases, this increase was more significant. Interface analysis results indicate that reduced graphene oxide (rGO)/HA interface is likely coherent. These nanocomposites were biocompatible and showed some hydrophobicity compared to pure HA.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-64928-y</identifier><identifier>PMID: 32444676</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357 ; 639/301/54 ; Cell viability ; Crystals ; Gases ; Graphene ; Humanities and Social Sciences ; Hydrogen ; Hydrophobicity ; Hydroxyapatite ; Injection ; Mechanical properties ; Microscopic analysis ; multidisciplinary ; Multidisciplinary Sciences ; Nanocomposites ; Plasma sintering ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-05, Vol.10 (1), p.8552-8552, Article 8552</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>25</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000540510300055</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c474t-c2edb80ab3e45335961e686e7d68ac8ad9787288f287f35e49dc021eaafe04db3</citedby><cites>FETCH-LOGICAL-c474t-c2edb80ab3e45335961e686e7d68ac8ad9787288f287f35e49dc021eaafe04db3</cites><orcidid>0000-0003-4385-9379 ; 0000-0002-3253-7844 ; 0000-0003-1509-9819 ; 0000-0001-8688-8853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244769/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244769/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2116,27931,27932,28255,41127,42196,51583,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32444676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nosrati, Hassan</creatorcontrib><creatorcontrib>Sarraf-Mamoory, Rasoul</creatorcontrib><creatorcontrib>Le, Dang Quang Svend</creatorcontrib><creatorcontrib>Zolfaghari Emameh, Reza</creatorcontrib><creatorcontrib>Canillas Perez, Maria</creatorcontrib><creatorcontrib>Bünger, Cody Eric</creatorcontrib><title>Improving the mechanical behavior of reduced graphene oxide/hydroxyapatite nanocomposites using gas injection into powders synthesis autoclave</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>In this study, we show the synthesis of reduced graphene oxide/hydroxyapatite (rGO/HA) composites using a hydrothermal autoclave with argon-15% hydrogen gas injection. This both increases the hydrothermal pressure and uses hydrogen as a reductive agent in the process. The synthesized powders were then consolidated with spark plasma sintering method. The analysis of the consolidated samples included Vickers Indentation technique and cell viability. The results showed that injected gases in the autoclave produced powders with a higher crystallinity compared to synthesis without the gases. Also, hydrogen gas led to increased reduction of GO. The microscopic analysis confirmed existing graphene sheets with folding and wrinkling in the powders and indicated that various preferential directions played a role in the growth of hydroxyapatite crystals. The results showed that in general, graphene sheets increased the mechanical properties of HA. In the samples synthesized with injected gases, this increase was more significant. Interface analysis results indicate that reduced graphene oxide (rGO)/HA interface is likely coherent. These nanocomposites were biocompatible and showed some hydrophobicity compared to pure HA.</description><subject>639/301/357</subject><subject>639/301/54</subject><subject>Cell viability</subject><subject>Crystals</subject><subject>Gases</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen</subject><subject>Hydrophobicity</subject><subject>Hydroxyapatite</subject><subject>Injection</subject><subject>Mechanical properties</subject><subject>Microscopic analysis</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Nanocomposites</subject><subject>Plasma sintering</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks-O1SAUxhujcSbjvIALQ-LGxNShQFu6MTE3_plkEje6JhROb7lpoQK9M30Jn1lqx-vowtgNh_D7Ps7ha5Y9L_CbAlN-FVhRNjzHBOcVawjPl0fZOcGszAkl5PGD-iy7DOGA01eShhXN0-yMEsZYVVfn2ffrcfLuaOwexR7QCKqX1ig5oBZ6eTTOI9chD3pWoNHey6kHC8jdGQ1X_aK9u1vkJKOJgKy0TrlxciHtAprD6rqXARl7ABWNs6mKDk3uVoMPKCw23RlMQHKOTg3yCM-yJ50cAlzerxfZ1w_vv-w-5TefP17v3t3kitUs5oqAbjmWLQVWUlo2VQEVr6DWFZeKS93UvCacd4TXHS2BNVphUoCUHWCmW3qRvd18p7kdQSuw0ctBTN6M0i_CSSP-PLGmF3t3FHV6ubpqksGrewPvvs0QohhNUDAM0oKbgyAMVxTXtGYJffkXenCzt2m8lSo5ww0miSIbpbwLwUN3aqbAYk1cbImLlLj4mbhYkujFwzFOkl_5JoBvwC20rgvKgFVwwtZfInWQ3Neq3Jko15R2brYxSV__vzTRdKNDIuwe_O8h_9H_D_3F3Uc</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Nosrati, Hassan</creator><creator>Sarraf-Mamoory, Rasoul</creator><creator>Le, Dang Quang Svend</creator><creator>Zolfaghari Emameh, Reza</creator><creator>Canillas Perez, Maria</creator><creator>Bünger, Cody Eric</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4385-9379</orcidid><orcidid>https://orcid.org/0000-0002-3253-7844</orcidid><orcidid>https://orcid.org/0000-0003-1509-9819</orcidid><orcidid>https://orcid.org/0000-0001-8688-8853</orcidid></search><sort><creationdate>20200522</creationdate><title>Improving the mechanical behavior of reduced graphene oxide/hydroxyapatite nanocomposites using gas injection into powders synthesis autoclave</title><author>Nosrati, Hassan ; Sarraf-Mamoory, Rasoul ; Le, Dang Quang Svend ; Zolfaghari Emameh, Reza ; Canillas Perez, Maria ; Bünger, Cody Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c2edb80ab3e45335961e686e7d68ac8ad9787288f287f35e49dc021eaafe04db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/357</topic><topic>639/301/54</topic><topic>Cell viability</topic><topic>Crystals</topic><topic>Gases</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen</topic><topic>Hydrophobicity</topic><topic>Hydroxyapatite</topic><topic>Injection</topic><topic>Mechanical properties</topic><topic>Microscopic analysis</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Nanocomposites</topic><topic>Plasma sintering</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nosrati, Hassan</creatorcontrib><creatorcontrib>Sarraf-Mamoory, Rasoul</creatorcontrib><creatorcontrib>Le, Dang Quang Svend</creatorcontrib><creatorcontrib>Zolfaghari Emameh, Reza</creatorcontrib><creatorcontrib>Canillas Perez, Maria</creatorcontrib><creatorcontrib>Bünger, Cody Eric</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nosrati, Hassan</au><au>Sarraf-Mamoory, Rasoul</au><au>Le, Dang Quang Svend</au><au>Zolfaghari Emameh, Reza</au><au>Canillas Perez, Maria</au><au>Bünger, Cody Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the mechanical behavior of reduced graphene oxide/hydroxyapatite nanocomposites using gas injection into powders synthesis autoclave</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2020-05-22</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>8552</spage><epage>8552</epage><pages>8552-8552</pages><artnum>8552</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this study, we show the synthesis of reduced graphene oxide/hydroxyapatite (rGO/HA) composites using a hydrothermal autoclave with argon-15% hydrogen gas injection. This both increases the hydrothermal pressure and uses hydrogen as a reductive agent in the process. The synthesized powders were then consolidated with spark plasma sintering method. The analysis of the consolidated samples included Vickers Indentation technique and cell viability. The results showed that injected gases in the autoclave produced powders with a higher crystallinity compared to synthesis without the gases. Also, hydrogen gas led to increased reduction of GO. The microscopic analysis confirmed existing graphene sheets with folding and wrinkling in the powders and indicated that various preferential directions played a role in the growth of hydroxyapatite crystals. The results showed that in general, graphene sheets increased the mechanical properties of HA. In the samples synthesized with injected gases, this increase was more significant. Interface analysis results indicate that reduced graphene oxide (rGO)/HA interface is likely coherent. These nanocomposites were biocompatible and showed some hydrophobicity compared to pure HA.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32444676</pmid><doi>10.1038/s41598-020-64928-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4385-9379</orcidid><orcidid>https://orcid.org/0000-0002-3253-7844</orcidid><orcidid>https://orcid.org/0000-0003-1509-9819</orcidid><orcidid>https://orcid.org/0000-0001-8688-8853</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-05, Vol.10 (1), p.8552-8552, Article 8552 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_webofscience_primary_000540510300055 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 639/301/357 639/301/54 Cell viability Crystals Gases Graphene Humanities and Social Sciences Hydrogen Hydrophobicity Hydroxyapatite Injection Mechanical properties Microscopic analysis multidisciplinary Multidisciplinary Sciences Nanocomposites Plasma sintering Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) |
title | Improving the mechanical behavior of reduced graphene oxide/hydroxyapatite nanocomposites using gas injection into powders synthesis autoclave |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20mechanical%20behavior%20of%20reduced%20graphene%20oxide/hydroxyapatite%20nanocomposites%20using%20gas%20injection%20into%20powders%20synthesis%20autoclave&rft.jtitle=Scientific%20reports&rft.au=Nosrati,%20Hassan&rft.date=2020-05-22&rft.volume=10&rft.issue=1&rft.spage=8552&rft.epage=8552&rft.pages=8552-8552&rft.artnum=8552&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-64928-y&rft_dat=%3Cproquest_webof%3E2405840902%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405840902&rft_id=info:pmid/32444676&rfr_iscdi=true |