Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis

Nanocomposites like bone are used in vivo in a dynamic mechanical environment, and musculoskeletal fracture during traumatic events lead to pain and immobilisation, especially significant in elderly and patients with metabolic bone diseases. To mitigate against these occurrences, it is essential to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part B, Engineering Engineering, 2020-09, Vol.196, p.108138, Article 108138
Hauptverfasser: Xi, Li, Wen, Weibin, Wu, Wenwang, Qu, Zhaoliang, Tao, Ran, Karunaratne, Angelo, Liao, Binbin, Li, Ying, Fang, Daining
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108138
container_title Composites. Part B, Engineering
container_volume 196
creator Xi, Li
Wen, Weibin
Wu, Wenwang
Qu, Zhaoliang
Tao, Ran
Karunaratne, Angelo
Liao, Binbin
Li, Ying
Fang, Daining
description Nanocomposites like bone are used in vivo in a dynamic mechanical environment, and musculoskeletal fracture during traumatic events lead to pain and immobilisation, especially significant in elderly and patients with metabolic bone diseases. To mitigate against these occurrences, it is essential to understand the dynamic mechanical response of bone over short timescales, but the underlying matrix-level mechanisms are not well understood. Here, we studied the mechanical response of cortical bone at nano- and micro-scale in a mouse model with glucocorticoid induced osteoporosis and their wild type littermates using real-time synchrotron small-angle X-ray diffraction (SAXD) combined with in situ compression testing and micro-tensile testing under controlled strain rates. Under compression, the tissue modulus, yield stress, effective fibril modulus and fibrillar reorientation rate in osteoporotic bone is significantly lower than that in healthy bone. Under tension, when going from low to high strain rates, the effective fibril modulus of healthy bone increase by a factor of 4.8, but this tendency is suppressed in osteoporotic bone. Also, bone microstructure in osteoporotic showed large fraction of cavities with disrupted mineralization. Our results demonstrate how the nano- and microscale deformation mechanisms of bone ultrastructure change in osteoporotic bone under compression and tension. Our results suggest that material level changes of bone matrix contributed to the reduced mechanical competence of bone in metabolic bone diseases such as osteoporosis.
doi_str_mv 10.1016/j.compositesb.2020.108138
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000540219500025CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836819363164</els_id><sourcerecordid>S1359836819363164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-8cd413b5f4af19ace4bc4405145e409c8d2d342c2dcdef467f0279cadd2849613</originalsourceid><addsrcrecordid>eNqNkMFu3CAQhq2okbJN8w7kHHkDGHvhGFltEylVL-0Z4WFQWHlhBWyq9tgnL46jqMec-DX6P2b0Nc01o1tG2XC730I8HGP2BfO05ZQvc8k6edZsmNypltFBfai561Uru0FeNB9z3lNKRd_xTfP3G8KTCR7MTBLmYwwZSXQEYiovwykGJD6QZU0tZB8DMcGSgmHNhZQnJAcfMJnZ_0FLnJ-Sn2eTyIzPOC90LpiitzXaE9RKrIN4jKkenj81587MGa9e38vm55fPP8b79vH714fx7rGFjrPSSrCCdVPvhHFMGUAxgRC0Z6JHQRVIy20nOHALFp0Ydo7ynQJjLZdCDay7bNT6L9S1OaHTx-QPJv3WjOpFpt7r_2TqRaZeZVZWruwvnKLL4DEAvvHVZi8oZ6qvifejL6ZUN2M8hVLRm_ejtT2ubawmnj0m_UpYnxCKttG_49x_SQeotw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xi, Li ; Wen, Weibin ; Wu, Wenwang ; Qu, Zhaoliang ; Tao, Ran ; Karunaratne, Angelo ; Liao, Binbin ; Li, Ying ; Fang, Daining</creator><creatorcontrib>Xi, Li ; Wen, Weibin ; Wu, Wenwang ; Qu, Zhaoliang ; Tao, Ran ; Karunaratne, Angelo ; Liao, Binbin ; Li, Ying ; Fang, Daining</creatorcontrib><description>Nanocomposites like bone are used in vivo in a dynamic mechanical environment, and musculoskeletal fracture during traumatic events lead to pain and immobilisation, especially significant in elderly and patients with metabolic bone diseases. To mitigate against these occurrences, it is essential to understand the dynamic mechanical response of bone over short timescales, but the underlying matrix-level mechanisms are not well understood. Here, we studied the mechanical response of cortical bone at nano- and micro-scale in a mouse model with glucocorticoid induced osteoporosis and their wild type littermates using real-time synchrotron small-angle X-ray diffraction (SAXD) combined with in situ compression testing and micro-tensile testing under controlled strain rates. Under compression, the tissue modulus, yield stress, effective fibril modulus and fibrillar reorientation rate in osteoporotic bone is significantly lower than that in healthy bone. Under tension, when going from low to high strain rates, the effective fibril modulus of healthy bone increase by a factor of 4.8, but this tendency is suppressed in osteoporotic bone. Also, bone microstructure in osteoporotic showed large fraction of cavities with disrupted mineralization. Our results demonstrate how the nano- and microscale deformation mechanisms of bone ultrastructure change in osteoporotic bone under compression and tension. Our results suggest that material level changes of bone matrix contributed to the reduced mechanical competence of bone in metabolic bone diseases such as osteoporosis.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2020.108138</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Biomechanics ; Bone ; Engineering ; Engineering, Multidisciplinary ; Glucocorticoid induced osteoporosis ; Materials Science ; Materials Science, Composites ; Science &amp; Technology ; Synchrotron X-ray nanomechanical imaging ; Technology</subject><ispartof>Composites. Part B, Engineering, 2020-09, Vol.196, p.108138, Article 108138</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000540219500025</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c321t-8cd413b5f4af19ace4bc4405145e409c8d2d342c2dcdef467f0279cadd2849613</citedby><cites>FETCH-LOGICAL-c321t-8cd413b5f4af19ace4bc4405145e409c8d2d342c2dcdef467f0279cadd2849613</cites><orcidid>0000-0001-7122-8780 ; 0000-0002-8582-5073 ; 0000-0001-7906-678X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesb.2020.108138$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Xi, Li</creatorcontrib><creatorcontrib>Wen, Weibin</creatorcontrib><creatorcontrib>Wu, Wenwang</creatorcontrib><creatorcontrib>Qu, Zhaoliang</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Karunaratne, Angelo</creatorcontrib><creatorcontrib>Liao, Binbin</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Fang, Daining</creatorcontrib><title>Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis</title><title>Composites. Part B, Engineering</title><addtitle>COMPOS PART B-ENG</addtitle><description>Nanocomposites like bone are used in vivo in a dynamic mechanical environment, and musculoskeletal fracture during traumatic events lead to pain and immobilisation, especially significant in elderly and patients with metabolic bone diseases. To mitigate against these occurrences, it is essential to understand the dynamic mechanical response of bone over short timescales, but the underlying matrix-level mechanisms are not well understood. Here, we studied the mechanical response of cortical bone at nano- and micro-scale in a mouse model with glucocorticoid induced osteoporosis and their wild type littermates using real-time synchrotron small-angle X-ray diffraction (SAXD) combined with in situ compression testing and micro-tensile testing under controlled strain rates. Under compression, the tissue modulus, yield stress, effective fibril modulus and fibrillar reorientation rate in osteoporotic bone is significantly lower than that in healthy bone. Under tension, when going from low to high strain rates, the effective fibril modulus of healthy bone increase by a factor of 4.8, but this tendency is suppressed in osteoporotic bone. Also, bone microstructure in osteoporotic showed large fraction of cavities with disrupted mineralization. Our results demonstrate how the nano- and microscale deformation mechanisms of bone ultrastructure change in osteoporotic bone under compression and tension. Our results suggest that material level changes of bone matrix contributed to the reduced mechanical competence of bone in metabolic bone diseases such as osteoporosis.</description><subject>Biomechanics</subject><subject>Bone</subject><subject>Engineering</subject><subject>Engineering, Multidisciplinary</subject><subject>Glucocorticoid induced osteoporosis</subject><subject>Materials Science</subject><subject>Materials Science, Composites</subject><subject>Science &amp; Technology</subject><subject>Synchrotron X-ray nanomechanical imaging</subject><subject>Technology</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMFu3CAQhq2okbJN8w7kHHkDGHvhGFltEylVL-0Z4WFQWHlhBWyq9tgnL46jqMec-DX6P2b0Nc01o1tG2XC730I8HGP2BfO05ZQvc8k6edZsmNypltFBfai561Uru0FeNB9z3lNKRd_xTfP3G8KTCR7MTBLmYwwZSXQEYiovwykGJD6QZU0tZB8DMcGSgmHNhZQnJAcfMJnZ_0FLnJ-Sn2eTyIzPOC90LpiitzXaE9RKrIN4jKkenj81587MGa9e38vm55fPP8b79vH714fx7rGFjrPSSrCCdVPvhHFMGUAxgRC0Z6JHQRVIy20nOHALFp0Ydo7ynQJjLZdCDay7bNT6L9S1OaHTx-QPJv3WjOpFpt7r_2TqRaZeZVZWruwvnKLL4DEAvvHVZi8oZ6qvifejL6ZUN2M8hVLRm_ejtT2ubawmnj0m_UpYnxCKttG_49x_SQeotw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Xi, Li</creator><creator>Wen, Weibin</creator><creator>Wu, Wenwang</creator><creator>Qu, Zhaoliang</creator><creator>Tao, Ran</creator><creator>Karunaratne, Angelo</creator><creator>Liao, Binbin</creator><creator>Li, Ying</creator><creator>Fang, Daining</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7122-8780</orcidid><orcidid>https://orcid.org/0000-0002-8582-5073</orcidid><orcidid>https://orcid.org/0000-0001-7906-678X</orcidid></search><sort><creationdate>20200901</creationdate><title>Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis</title><author>Xi, Li ; Wen, Weibin ; Wu, Wenwang ; Qu, Zhaoliang ; Tao, Ran ; Karunaratne, Angelo ; Liao, Binbin ; Li, Ying ; Fang, Daining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-8cd413b5f4af19ace4bc4405145e409c8d2d342c2dcdef467f0279cadd2849613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomechanics</topic><topic>Bone</topic><topic>Engineering</topic><topic>Engineering, Multidisciplinary</topic><topic>Glucocorticoid induced osteoporosis</topic><topic>Materials Science</topic><topic>Materials Science, Composites</topic><topic>Science &amp; Technology</topic><topic>Synchrotron X-ray nanomechanical imaging</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi, Li</creatorcontrib><creatorcontrib>Wen, Weibin</creatorcontrib><creatorcontrib>Wu, Wenwang</creatorcontrib><creatorcontrib>Qu, Zhaoliang</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Karunaratne, Angelo</creatorcontrib><creatorcontrib>Liao, Binbin</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Fang, Daining</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi, Li</au><au>Wen, Weibin</au><au>Wu, Wenwang</au><au>Qu, Zhaoliang</au><au>Tao, Ran</au><au>Karunaratne, Angelo</au><au>Liao, Binbin</au><au>Li, Ying</au><au>Fang, Daining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis</atitle><jtitle>Composites. Part B, Engineering</jtitle><stitle>COMPOS PART B-ENG</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>196</volume><spage>108138</spage><pages>108138-</pages><artnum>108138</artnum><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>Nanocomposites like bone are used in vivo in a dynamic mechanical environment, and musculoskeletal fracture during traumatic events lead to pain and immobilisation, especially significant in elderly and patients with metabolic bone diseases. To mitigate against these occurrences, it is essential to understand the dynamic mechanical response of bone over short timescales, but the underlying matrix-level mechanisms are not well understood. Here, we studied the mechanical response of cortical bone at nano- and micro-scale in a mouse model with glucocorticoid induced osteoporosis and their wild type littermates using real-time synchrotron small-angle X-ray diffraction (SAXD) combined with in situ compression testing and micro-tensile testing under controlled strain rates. Under compression, the tissue modulus, yield stress, effective fibril modulus and fibrillar reorientation rate in osteoporotic bone is significantly lower than that in healthy bone. Under tension, when going from low to high strain rates, the effective fibril modulus of healthy bone increase by a factor of 4.8, but this tendency is suppressed in osteoporotic bone. Also, bone microstructure in osteoporotic showed large fraction of cavities with disrupted mineralization. Our results demonstrate how the nano- and microscale deformation mechanisms of bone ultrastructure change in osteoporotic bone under compression and tension. Our results suggest that material level changes of bone matrix contributed to the reduced mechanical competence of bone in metabolic bone diseases such as osteoporosis.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2020.108138</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7122-8780</orcidid><orcidid>https://orcid.org/0000-0002-8582-5073</orcidid><orcidid>https://orcid.org/0000-0001-7906-678X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-8368
ispartof Composites. Part B, Engineering, 2020-09, Vol.196, p.108138, Article 108138
issn 1359-8368
1879-1069
language eng
recordid cdi_webofscience_primary_000540219500025CitationCount
source Access via ScienceDirect (Elsevier)
subjects Biomechanics
Bone
Engineering
Engineering, Multidisciplinary
Glucocorticoid induced osteoporosis
Materials Science
Materials Science, Composites
Science & Technology
Synchrotron X-ray nanomechanical imaging
Technology
title Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20response%20of%20cortical%20bone%20in%20compression%20and%20tension%20at%20the%20mineralized%20fibrillar%20level%20in%20steroid%20induced%20osteoporosis&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Xi,%20Li&rft.date=2020-09-01&rft.volume=196&rft.spage=108138&rft.pages=108138-&rft.artnum=108138&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2020.108138&rft_dat=%3Celsevier_webof%3ES1359836819363164%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359836819363164&rfr_iscdi=true