Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis
Nanocomposites like bone are used in vivo in a dynamic mechanical environment, and musculoskeletal fracture during traumatic events lead to pain and immobilisation, especially significant in elderly and patients with metabolic bone diseases. To mitigate against these occurrences, it is essential to...
Gespeichert in:
Veröffentlicht in: | Composites. Part B, Engineering Engineering, 2020-09, Vol.196, p.108138, Article 108138 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108138 |
container_title | Composites. Part B, Engineering |
container_volume | 196 |
creator | Xi, Li Wen, Weibin Wu, Wenwang Qu, Zhaoliang Tao, Ran Karunaratne, Angelo Liao, Binbin Li, Ying Fang, Daining |
description | Nanocomposites like bone are used in vivo in a dynamic mechanical environment, and musculoskeletal fracture during traumatic events lead to pain and immobilisation, especially significant in elderly and patients with metabolic bone diseases. To mitigate against these occurrences, it is essential to understand the dynamic mechanical response of bone over short timescales, but the underlying matrix-level mechanisms are not well understood. Here, we studied the mechanical response of cortical bone at nano- and micro-scale in a mouse model with glucocorticoid induced osteoporosis and their wild type littermates using real-time synchrotron small-angle X-ray diffraction (SAXD) combined with in situ compression testing and micro-tensile testing under controlled strain rates. Under compression, the tissue modulus, yield stress, effective fibril modulus and fibrillar reorientation rate in osteoporotic bone is significantly lower than that in healthy bone. Under tension, when going from low to high strain rates, the effective fibril modulus of healthy bone increase by a factor of 4.8, but this tendency is suppressed in osteoporotic bone. Also, bone microstructure in osteoporotic showed large fraction of cavities with disrupted mineralization. Our results demonstrate how the nano- and microscale deformation mechanisms of bone ultrastructure change in osteoporotic bone under compression and tension. Our results suggest that material level changes of bone matrix contributed to the reduced mechanical competence of bone in metabolic bone diseases such as osteoporosis. |
doi_str_mv | 10.1016/j.compositesb.2020.108138 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000540219500025CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836819363164</els_id><sourcerecordid>S1359836819363164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-8cd413b5f4af19ace4bc4405145e409c8d2d342c2dcdef467f0279cadd2849613</originalsourceid><addsrcrecordid>eNqNkMFu3CAQhq2okbJN8w7kHHkDGHvhGFltEylVL-0Z4WFQWHlhBWyq9tgnL46jqMec-DX6P2b0Nc01o1tG2XC730I8HGP2BfO05ZQvc8k6edZsmNypltFBfai561Uru0FeNB9z3lNKRd_xTfP3G8KTCR7MTBLmYwwZSXQEYiovwykGJD6QZU0tZB8DMcGSgmHNhZQnJAcfMJnZ_0FLnJ-Sn2eTyIzPOC90LpiitzXaE9RKrIN4jKkenj81587MGa9e38vm55fPP8b79vH714fx7rGFjrPSSrCCdVPvhHFMGUAxgRC0Z6JHQRVIy20nOHALFp0Ydo7ynQJjLZdCDay7bNT6L9S1OaHTx-QPJv3WjOpFpt7r_2TqRaZeZVZWruwvnKLL4DEAvvHVZi8oZ6qvifejL6ZUN2M8hVLRm_ejtT2ubawmnj0m_UpYnxCKttG_49x_SQeotw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xi, Li ; Wen, Weibin ; Wu, Wenwang ; Qu, Zhaoliang ; Tao, Ran ; Karunaratne, Angelo ; Liao, Binbin ; Li, Ying ; Fang, Daining</creator><creatorcontrib>Xi, Li ; Wen, Weibin ; Wu, Wenwang ; Qu, Zhaoliang ; Tao, Ran ; Karunaratne, Angelo ; Liao, Binbin ; Li, Ying ; Fang, Daining</creatorcontrib><description>Nanocomposites like bone are used in vivo in a dynamic mechanical environment, and musculoskeletal fracture during traumatic events lead to pain and immobilisation, especially significant in elderly and patients with metabolic bone diseases. To mitigate against these occurrences, it is essential to understand the dynamic mechanical response of bone over short timescales, but the underlying matrix-level mechanisms are not well understood. Here, we studied the mechanical response of cortical bone at nano- and micro-scale in a mouse model with glucocorticoid induced osteoporosis and their wild type littermates using real-time synchrotron small-angle X-ray diffraction (SAXD) combined with in situ compression testing and micro-tensile testing under controlled strain rates. Under compression, the tissue modulus, yield stress, effective fibril modulus and fibrillar reorientation rate in osteoporotic bone is significantly lower than that in healthy bone. Under tension, when going from low to high strain rates, the effective fibril modulus of healthy bone increase by a factor of 4.8, but this tendency is suppressed in osteoporotic bone. Also, bone microstructure in osteoporotic showed large fraction of cavities with disrupted mineralization. Our results demonstrate how the nano- and microscale deformation mechanisms of bone ultrastructure change in osteoporotic bone under compression and tension. Our results suggest that material level changes of bone matrix contributed to the reduced mechanical competence of bone in metabolic bone diseases such as osteoporosis.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2020.108138</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Biomechanics ; Bone ; Engineering ; Engineering, Multidisciplinary ; Glucocorticoid induced osteoporosis ; Materials Science ; Materials Science, Composites ; Science & Technology ; Synchrotron X-ray nanomechanical imaging ; Technology</subject><ispartof>Composites. Part B, Engineering, 2020-09, Vol.196, p.108138, Article 108138</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000540219500025</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c321t-8cd413b5f4af19ace4bc4405145e409c8d2d342c2dcdef467f0279cadd2849613</citedby><cites>FETCH-LOGICAL-c321t-8cd413b5f4af19ace4bc4405145e409c8d2d342c2dcdef467f0279cadd2849613</cites><orcidid>0000-0001-7122-8780 ; 0000-0002-8582-5073 ; 0000-0001-7906-678X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesb.2020.108138$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Xi, Li</creatorcontrib><creatorcontrib>Wen, Weibin</creatorcontrib><creatorcontrib>Wu, Wenwang</creatorcontrib><creatorcontrib>Qu, Zhaoliang</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Karunaratne, Angelo</creatorcontrib><creatorcontrib>Liao, Binbin</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Fang, Daining</creatorcontrib><title>Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis</title><title>Composites. Part B, Engineering</title><addtitle>COMPOS PART B-ENG</addtitle><description>Nanocomposites like bone are used in vivo in a dynamic mechanical environment, and musculoskeletal fracture during traumatic events lead to pain and immobilisation, especially significant in elderly and patients with metabolic bone diseases. To mitigate against these occurrences, it is essential to understand the dynamic mechanical response of bone over short timescales, but the underlying matrix-level mechanisms are not well understood. Here, we studied the mechanical response of cortical bone at nano- and micro-scale in a mouse model with glucocorticoid induced osteoporosis and their wild type littermates using real-time synchrotron small-angle X-ray diffraction (SAXD) combined with in situ compression testing and micro-tensile testing under controlled strain rates. Under compression, the tissue modulus, yield stress, effective fibril modulus and fibrillar reorientation rate in osteoporotic bone is significantly lower than that in healthy bone. Under tension, when going from low to high strain rates, the effective fibril modulus of healthy bone increase by a factor of 4.8, but this tendency is suppressed in osteoporotic bone. Also, bone microstructure in osteoporotic showed large fraction of cavities with disrupted mineralization. Our results demonstrate how the nano- and microscale deformation mechanisms of bone ultrastructure change in osteoporotic bone under compression and tension. Our results suggest that material level changes of bone matrix contributed to the reduced mechanical competence of bone in metabolic bone diseases such as osteoporosis.</description><subject>Biomechanics</subject><subject>Bone</subject><subject>Engineering</subject><subject>Engineering, Multidisciplinary</subject><subject>Glucocorticoid induced osteoporosis</subject><subject>Materials Science</subject><subject>Materials Science, Composites</subject><subject>Science & Technology</subject><subject>Synchrotron X-ray nanomechanical imaging</subject><subject>Technology</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMFu3CAQhq2okbJN8w7kHHkDGHvhGFltEylVL-0Z4WFQWHlhBWyq9tgnL46jqMec-DX6P2b0Nc01o1tG2XC730I8HGP2BfO05ZQvc8k6edZsmNypltFBfai561Uru0FeNB9z3lNKRd_xTfP3G8KTCR7MTBLmYwwZSXQEYiovwykGJD6QZU0tZB8DMcGSgmHNhZQnJAcfMJnZ_0FLnJ-Sn2eTyIzPOC90LpiitzXaE9RKrIN4jKkenj81587MGa9e38vm55fPP8b79vH714fx7rGFjrPSSrCCdVPvhHFMGUAxgRC0Z6JHQRVIy20nOHALFp0Ydo7ynQJjLZdCDay7bNT6L9S1OaHTx-QPJv3WjOpFpt7r_2TqRaZeZVZWruwvnKLL4DEAvvHVZi8oZ6qvifejL6ZUN2M8hVLRm_ejtT2ubawmnj0m_UpYnxCKttG_49x_SQeotw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Xi, Li</creator><creator>Wen, Weibin</creator><creator>Wu, Wenwang</creator><creator>Qu, Zhaoliang</creator><creator>Tao, Ran</creator><creator>Karunaratne, Angelo</creator><creator>Liao, Binbin</creator><creator>Li, Ying</creator><creator>Fang, Daining</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7122-8780</orcidid><orcidid>https://orcid.org/0000-0002-8582-5073</orcidid><orcidid>https://orcid.org/0000-0001-7906-678X</orcidid></search><sort><creationdate>20200901</creationdate><title>Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis</title><author>Xi, Li ; Wen, Weibin ; Wu, Wenwang ; Qu, Zhaoliang ; Tao, Ran ; Karunaratne, Angelo ; Liao, Binbin ; Li, Ying ; Fang, Daining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-8cd413b5f4af19ace4bc4405145e409c8d2d342c2dcdef467f0279cadd2849613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomechanics</topic><topic>Bone</topic><topic>Engineering</topic><topic>Engineering, Multidisciplinary</topic><topic>Glucocorticoid induced osteoporosis</topic><topic>Materials Science</topic><topic>Materials Science, Composites</topic><topic>Science & Technology</topic><topic>Synchrotron X-ray nanomechanical imaging</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi, Li</creatorcontrib><creatorcontrib>Wen, Weibin</creatorcontrib><creatorcontrib>Wu, Wenwang</creatorcontrib><creatorcontrib>Qu, Zhaoliang</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Karunaratne, Angelo</creatorcontrib><creatorcontrib>Liao, Binbin</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Fang, Daining</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi, Li</au><au>Wen, Weibin</au><au>Wu, Wenwang</au><au>Qu, Zhaoliang</au><au>Tao, Ran</au><au>Karunaratne, Angelo</au><au>Liao, Binbin</au><au>Li, Ying</au><au>Fang, Daining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis</atitle><jtitle>Composites. Part B, Engineering</jtitle><stitle>COMPOS PART B-ENG</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>196</volume><spage>108138</spage><pages>108138-</pages><artnum>108138</artnum><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>Nanocomposites like bone are used in vivo in a dynamic mechanical environment, and musculoskeletal fracture during traumatic events lead to pain and immobilisation, especially significant in elderly and patients with metabolic bone diseases. To mitigate against these occurrences, it is essential to understand the dynamic mechanical response of bone over short timescales, but the underlying matrix-level mechanisms are not well understood. Here, we studied the mechanical response of cortical bone at nano- and micro-scale in a mouse model with glucocorticoid induced osteoporosis and their wild type littermates using real-time synchrotron small-angle X-ray diffraction (SAXD) combined with in situ compression testing and micro-tensile testing under controlled strain rates. Under compression, the tissue modulus, yield stress, effective fibril modulus and fibrillar reorientation rate in osteoporotic bone is significantly lower than that in healthy bone. Under tension, when going from low to high strain rates, the effective fibril modulus of healthy bone increase by a factor of 4.8, but this tendency is suppressed in osteoporotic bone. Also, bone microstructure in osteoporotic showed large fraction of cavities with disrupted mineralization. Our results demonstrate how the nano- and microscale deformation mechanisms of bone ultrastructure change in osteoporotic bone under compression and tension. Our results suggest that material level changes of bone matrix contributed to the reduced mechanical competence of bone in metabolic bone diseases such as osteoporosis.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2020.108138</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7122-8780</orcidid><orcidid>https://orcid.org/0000-0002-8582-5073</orcidid><orcidid>https://orcid.org/0000-0001-7906-678X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-8368 |
ispartof | Composites. Part B, Engineering, 2020-09, Vol.196, p.108138, Article 108138 |
issn | 1359-8368 1879-1069 |
language | eng |
recordid | cdi_webofscience_primary_000540219500025CitationCount |
source | Access via ScienceDirect (Elsevier) |
subjects | Biomechanics Bone Engineering Engineering, Multidisciplinary Glucocorticoid induced osteoporosis Materials Science Materials Science, Composites Science & Technology Synchrotron X-ray nanomechanical imaging Technology |
title | Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20response%20of%20cortical%20bone%20in%20compression%20and%20tension%20at%20the%20mineralized%20fibrillar%20level%20in%20steroid%20induced%20osteoporosis&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Xi,%20Li&rft.date=2020-09-01&rft.volume=196&rft.spage=108138&rft.pages=108138-&rft.artnum=108138&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2020.108138&rft_dat=%3Celsevier_webof%3ES1359836819363164%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359836819363164&rfr_iscdi=true |