Incorporating nonlocal parallel thermal transport in 1D ITER SOL modelling

Accurate modelling of the thermal transport in the 'scrape-off-layer' (SOL) is of great importance for assessing the divertor exhaust power handling in future high-power tokamak devices. In conditions of low collisionality and/or steep temperature gradients that will be characteristic of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2020-07, Vol.60 (7), p.76008
Hauptverfasser: Wigram, M.R.K., Ridgers, C.P., Dudson, B.D., Brodrick, J.P., Omotani, J.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 76008
container_title Nuclear fusion
container_volume 60
creator Wigram, M.R.K.
Ridgers, C.P.
Dudson, B.D.
Brodrick, J.P.
Omotani, J.T.
description Accurate modelling of the thermal transport in the 'scrape-off-layer' (SOL) is of great importance for assessing the divertor exhaust power handling in future high-power tokamak devices. In conditions of low collisionality and/or steep temperature gradients that will be characteristic of such devices, classical local diffusive transport theory breaks down, and the thermal transport becomes nonlocal, depending on conditions in distant regions of the plasma. An advanced nonlocal thermal transport model is implemented into a 1D SOL code 'SD1D' to create 'SD1D-nonlocal', for the study of nonlocal transport in tokamak SOL plasmas. The code is applied to study typical ITER steady-state conditions, to assess the relevance of nonlocality for ITER operating scenarios. Results suggest that nonlocal effects will be present in the ITER SOL, with strong sensitivity in simulation outputs observed for small changes in upstream density conditions, and drastically different temperature profiles predicted using local/nonlocal transport models in some cases. Global flux limiters are shown to be inadequate to capture the spatially and temporally changing SOL conditions. Introducing impurity seeding, under conditions where detached divertor operation is achieved using the flux-limited Spitzer-Härm models used in standard SOL codes, simulations using the nonlocal thermal transport model under equivalent conditions were found to not reach detachment. An analysis of the connection between SOL collisionality and nonlocality suggests that nonlocal effects will be significant for future devices such as DEMO as well. The results motivate further work using nonlocal transport models to study disruption events and low collisionality regimes for ITER, to further improve accuracy of the nonlocal models employed in comparison to kinetic codes, and to identify more appropriate boundary conditions for a nonlocal SOL model.
doi_str_mv 10.1088/1741-4326/ab868b
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1741_4326_ab868b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nfab868b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-a90606241b2b468c84f3d8c16225e3fa7764188044e99438bc9cbe5f36b3e2933</originalsourceid><addsrcrecordid>eNp1kE1LxDAYhIMoWFfvHvMDrJuvpulR1nWtFBZ0PYckm2qXNClJPfjvbal48_TCMM_wzgBwi9E9RkKscclwzijha6UFF_oMZH_SOcgQIlVeFLi4BFcpnRDCDFOagZfamxCHENXY-Q_og3fBKAcHFZVz1sHx08Z-EsaofJp8I-w8xI-wPmxf4du-gX04Wucm-BpctMole_N7V-D9aXvYPOfNfldvHprcUELGXFWII04Y1kQzLoxgLT0KgzkhhaWtKkvOsBCIMVtVjAptKqNt0VKuqSUVpSuAllwTQ0rRtnKIXa_it8RIzlvIubici8tliwm5W5AuDPIUvqKfHvzf_gOT_l7j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Incorporating nonlocal parallel thermal transport in 1D ITER SOL modelling</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Wigram, M.R.K. ; Ridgers, C.P. ; Dudson, B.D. ; Brodrick, J.P. ; Omotani, J.T.</creator><creatorcontrib>Wigram, M.R.K. ; Ridgers, C.P. ; Dudson, B.D. ; Brodrick, J.P. ; Omotani, J.T.</creatorcontrib><description>Accurate modelling of the thermal transport in the 'scrape-off-layer' (SOL) is of great importance for assessing the divertor exhaust power handling in future high-power tokamak devices. In conditions of low collisionality and/or steep temperature gradients that will be characteristic of such devices, classical local diffusive transport theory breaks down, and the thermal transport becomes nonlocal, depending on conditions in distant regions of the plasma. An advanced nonlocal thermal transport model is implemented into a 1D SOL code 'SD1D' to create 'SD1D-nonlocal', for the study of nonlocal transport in tokamak SOL plasmas. The code is applied to study typical ITER steady-state conditions, to assess the relevance of nonlocality for ITER operating scenarios. Results suggest that nonlocal effects will be present in the ITER SOL, with strong sensitivity in simulation outputs observed for small changes in upstream density conditions, and drastically different temperature profiles predicted using local/nonlocal transport models in some cases. Global flux limiters are shown to be inadequate to capture the spatially and temporally changing SOL conditions. Introducing impurity seeding, under conditions where detached divertor operation is achieved using the flux-limited Spitzer-Härm models used in standard SOL codes, simulations using the nonlocal thermal transport model under equivalent conditions were found to not reach detachment. An analysis of the connection between SOL collisionality and nonlocality suggests that nonlocal effects will be significant for future devices such as DEMO as well. The results motivate further work using nonlocal transport models to study disruption events and low collisionality regimes for ITER, to further improve accuracy of the nonlocal models employed in comparison to kinetic codes, and to identify more appropriate boundary conditions for a nonlocal SOL model.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ab868b</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>detachment ; ITER ; modelling ; nonlocal ; scrape-off-layer ; thermal transport</subject><ispartof>Nuclear fusion, 2020-07, Vol.60 (7), p.76008</ispartof><rights>EURATOM 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-a90606241b2b468c84f3d8c16225e3fa7764188044e99438bc9cbe5f36b3e2933</citedby><cites>FETCH-LOGICAL-c322t-a90606241b2b468c84f3d8c16225e3fa7764188044e99438bc9cbe5f36b3e2933</cites><orcidid>0000-0001-5393-4585 ; 0000-0002-3156-8227 ; 0000-0002-5376-128X ; 0000-0002-0094-4867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/ab868b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Wigram, M.R.K.</creatorcontrib><creatorcontrib>Ridgers, C.P.</creatorcontrib><creatorcontrib>Dudson, B.D.</creatorcontrib><creatorcontrib>Brodrick, J.P.</creatorcontrib><creatorcontrib>Omotani, J.T.</creatorcontrib><title>Incorporating nonlocal parallel thermal transport in 1D ITER SOL modelling</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>Accurate modelling of the thermal transport in the 'scrape-off-layer' (SOL) is of great importance for assessing the divertor exhaust power handling in future high-power tokamak devices. In conditions of low collisionality and/or steep temperature gradients that will be characteristic of such devices, classical local diffusive transport theory breaks down, and the thermal transport becomes nonlocal, depending on conditions in distant regions of the plasma. An advanced nonlocal thermal transport model is implemented into a 1D SOL code 'SD1D' to create 'SD1D-nonlocal', for the study of nonlocal transport in tokamak SOL plasmas. The code is applied to study typical ITER steady-state conditions, to assess the relevance of nonlocality for ITER operating scenarios. Results suggest that nonlocal effects will be present in the ITER SOL, with strong sensitivity in simulation outputs observed for small changes in upstream density conditions, and drastically different temperature profiles predicted using local/nonlocal transport models in some cases. Global flux limiters are shown to be inadequate to capture the spatially and temporally changing SOL conditions. Introducing impurity seeding, under conditions where detached divertor operation is achieved using the flux-limited Spitzer-Härm models used in standard SOL codes, simulations using the nonlocal thermal transport model under equivalent conditions were found to not reach detachment. An analysis of the connection between SOL collisionality and nonlocality suggests that nonlocal effects will be significant for future devices such as DEMO as well. The results motivate further work using nonlocal transport models to study disruption events and low collisionality regimes for ITER, to further improve accuracy of the nonlocal models employed in comparison to kinetic codes, and to identify more appropriate boundary conditions for a nonlocal SOL model.</description><subject>detachment</subject><subject>ITER</subject><subject>modelling</subject><subject>nonlocal</subject><subject>scrape-off-layer</subject><subject>thermal transport</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kE1LxDAYhIMoWFfvHvMDrJuvpulR1nWtFBZ0PYckm2qXNClJPfjvbal48_TCMM_wzgBwi9E9RkKscclwzijha6UFF_oMZH_SOcgQIlVeFLi4BFcpnRDCDFOagZfamxCHENXY-Q_og3fBKAcHFZVz1sHx08Z-EsaofJp8I-w8xI-wPmxf4du-gX04Wucm-BpctMole_N7V-D9aXvYPOfNfldvHprcUELGXFWII04Y1kQzLoxgLT0KgzkhhaWtKkvOsBCIMVtVjAptKqNt0VKuqSUVpSuAllwTQ0rRtnKIXa_it8RIzlvIubici8tliwm5W5AuDPIUvqKfHvzf_gOT_l7j</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Wigram, M.R.K.</creator><creator>Ridgers, C.P.</creator><creator>Dudson, B.D.</creator><creator>Brodrick, J.P.</creator><creator>Omotani, J.T.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5393-4585</orcidid><orcidid>https://orcid.org/0000-0002-3156-8227</orcidid><orcidid>https://orcid.org/0000-0002-5376-128X</orcidid><orcidid>https://orcid.org/0000-0002-0094-4867</orcidid></search><sort><creationdate>20200701</creationdate><title>Incorporating nonlocal parallel thermal transport in 1D ITER SOL modelling</title><author>Wigram, M.R.K. ; Ridgers, C.P. ; Dudson, B.D. ; Brodrick, J.P. ; Omotani, J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-a90606241b2b468c84f3d8c16225e3fa7764188044e99438bc9cbe5f36b3e2933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>detachment</topic><topic>ITER</topic><topic>modelling</topic><topic>nonlocal</topic><topic>scrape-off-layer</topic><topic>thermal transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wigram, M.R.K.</creatorcontrib><creatorcontrib>Ridgers, C.P.</creatorcontrib><creatorcontrib>Dudson, B.D.</creatorcontrib><creatorcontrib>Brodrick, J.P.</creatorcontrib><creatorcontrib>Omotani, J.T.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wigram, M.R.K.</au><au>Ridgers, C.P.</au><au>Dudson, B.D.</au><au>Brodrick, J.P.</au><au>Omotani, J.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating nonlocal parallel thermal transport in 1D ITER SOL modelling</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>60</volume><issue>7</issue><spage>76008</spage><pages>76008-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Accurate modelling of the thermal transport in the 'scrape-off-layer' (SOL) is of great importance for assessing the divertor exhaust power handling in future high-power tokamak devices. In conditions of low collisionality and/or steep temperature gradients that will be characteristic of such devices, classical local diffusive transport theory breaks down, and the thermal transport becomes nonlocal, depending on conditions in distant regions of the plasma. An advanced nonlocal thermal transport model is implemented into a 1D SOL code 'SD1D' to create 'SD1D-nonlocal', for the study of nonlocal transport in tokamak SOL plasmas. The code is applied to study typical ITER steady-state conditions, to assess the relevance of nonlocality for ITER operating scenarios. Results suggest that nonlocal effects will be present in the ITER SOL, with strong sensitivity in simulation outputs observed for small changes in upstream density conditions, and drastically different temperature profiles predicted using local/nonlocal transport models in some cases. Global flux limiters are shown to be inadequate to capture the spatially and temporally changing SOL conditions. Introducing impurity seeding, under conditions where detached divertor operation is achieved using the flux-limited Spitzer-Härm models used in standard SOL codes, simulations using the nonlocal thermal transport model under equivalent conditions were found to not reach detachment. An analysis of the connection between SOL collisionality and nonlocality suggests that nonlocal effects will be significant for future devices such as DEMO as well. The results motivate further work using nonlocal transport models to study disruption events and low collisionality regimes for ITER, to further improve accuracy of the nonlocal models employed in comparison to kinetic codes, and to identify more appropriate boundary conditions for a nonlocal SOL model.</abstract><pub>IOP Publishing</pub><doi>10.1088/1741-4326/ab868b</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5393-4585</orcidid><orcidid>https://orcid.org/0000-0002-3156-8227</orcidid><orcidid>https://orcid.org/0000-0002-5376-128X</orcidid><orcidid>https://orcid.org/0000-0002-0094-4867</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2020-07, Vol.60 (7), p.76008
issn 0029-5515
1741-4326
language eng
recordid cdi_crossref_primary_10_1088_1741_4326_ab868b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects detachment
ITER
modelling
nonlocal
scrape-off-layer
thermal transport
title Incorporating nonlocal parallel thermal transport in 1D ITER SOL modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T07%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20nonlocal%20parallel%20thermal%20transport%20in%201D%20ITER%20SOL%20modelling&rft.jtitle=Nuclear%20fusion&rft.au=Wigram,%20M.R.K.&rft.date=2020-07-01&rft.volume=60&rft.issue=7&rft.spage=76008&rft.pages=76008-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/ab868b&rft_dat=%3Ciop_cross%3Enfab868b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true