Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma

Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a han...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-05, Vol.21 (10), p.3533, Article 3533
Hauptverfasser: Zeng, Yuhao, Komasa, Satoshi, Nishida, Hisataka, Agariguchi, Akinori, Sekino, Tohru, Okazaki, Joji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 3533
container_title International journal of molecular sciences
container_volume 21
creator Zeng, Yuhao
Komasa, Satoshi
Nishida, Hisataka
Agariguchi, Akinori
Sekino, Tohru
Okazaki, Joji
description Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a handheld non-thermal plasma device could efficiently eliminate biofilm contamination without destroying the surface nanostructure while re-establishing a surface that promoted new bone generation. TNS specimens were treated by a piezoelectric direct discharge (PDD) plasma generator. The effect of decontamination was performed utilizing Staphylococcus aureus. The evaluation of initial cell attachment with adhesion images, alkaline phosphatase activity, extracellular matrix mineralization, and expression of genes related to osteogenesis was performed using rat bone marrow mesenchymal stem cells, and the bone response were evaluated in vivo using a rat femur model. Nanotopography and surface roughness did not significantly differ before and after plasma treatments. Cell and bone formation activity were improved by TNS plasma treatment. Furthermore, plasma treatment effectively eliminated biofilm contamination from the surface. These results suggested that this plasma treatment may be a promising approach for the treatment of nanomaterials immediately before implantation and a therapeutic strategy for peri-implantitis.
doi_str_mv 10.3390/ijms21103533
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000539312100129CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_20c378c45c9b447e9ab4631ac91d9865</doaj_id><sourcerecordid>2405375177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-4450e2fa0e19dae292a33f353af26680b76f040bcfc83ead10e2496ac570db9d3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqVw44wicSwBfzu-ILVLgUpV28NytiaOs-vVxl5sB9RD_zteUlbtjZM942femdHrqnqL0UdKFfrkNmMiGCPKKX1WHWNGSIOQkM_LXQjcCK7EUfUqpQ1ChBKuXlZHlDCimMTH1f2FX4M3tq9vUrLB-WxXEbILvgbf1-cuNF-sCT7D6PycD0N9DT6kHCeTp1hKly6Dd9NYn0MqYWGug2-WaxtH2NZneQxpVwJn6ttoUyo19e0W0givqxcDbJN983CeVD--XiwX35urm2-Xi7OrxnDGcsMYR5YMgCxWPViiCFA6lIVhIEK0qJNiQAx1ZjAttdDjQjMlwHCJ-k719KS6nHX7ABu9i26EeKcDOP03EeJKQ8zObK0myFDZGsaN6hiTVkHHBMVgFO5VK3jR-jxr7aZutL2xPkfYPhF9-uLdWq_CLy2JbBWVReD9g0AMPyebst6EKfqyvyYMcSo5lnvqw0yZGFKKdjh0wEjvjdePjS_4u8dTHeB_ThfgdAZ-2y4MyThbXD9gCJXGimKCEcJEFbr9f3pR7N__jEWYfKZ_AK0MzL0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405375177</pqid></control><display><type>article</type><title>Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zeng, Yuhao ; Komasa, Satoshi ; Nishida, Hisataka ; Agariguchi, Akinori ; Sekino, Tohru ; Okazaki, Joji</creator><creatorcontrib>Zeng, Yuhao ; Komasa, Satoshi ; Nishida, Hisataka ; Agariguchi, Akinori ; Sekino, Tohru ; Okazaki, Joji</creatorcontrib><description>Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a handheld non-thermal plasma device could efficiently eliminate biofilm contamination without destroying the surface nanostructure while re-establishing a surface that promoted new bone generation. TNS specimens were treated by a piezoelectric direct discharge (PDD) plasma generator. The effect of decontamination was performed utilizing Staphylococcus aureus. The evaluation of initial cell attachment with adhesion images, alkaline phosphatase activity, extracellular matrix mineralization, and expression of genes related to osteogenesis was performed using rat bone marrow mesenchymal stem cells, and the bone response were evaluated in vivo using a rat femur model. Nanotopography and surface roughness did not significantly differ before and after plasma treatments. Cell and bone formation activity were improved by TNS plasma treatment. Furthermore, plasma treatment effectively eliminated biofilm contamination from the surface. These results suggested that this plasma treatment may be a promising approach for the treatment of nanomaterials immediately before implantation and a therapeutic strategy for peri-implantitis.</description><identifier>ISSN: 1661-6596</identifier><identifier>ISSN: 1422-0067</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21103533</identifier><identifier>PMID: 32429471</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>alkali-treated titanium ; Alkaline phosphatase ; Alkaline Phosphatase - metabolism ; Animals ; Atmospheric pressure ; Biochemistry &amp; Molecular Biology ; Biocompatibility ; biofilm inhibition ; Biofilms ; Biofilms - drug effects ; Biomedical materials ; Bone growth ; Bone marrow ; Bone Morphogenetic Protein 2 - metabolism ; Calcium - metabolism ; Carbon ; Cell adhesion ; Cell adhesion &amp; migration ; Cell Adhesion - drug effects ; Cell Shape - drug effects ; Chemical bonds ; Chemistry ; Chemistry, Multidisciplinary ; Contact angle ; Contamination ; Decontamination ; Efficiency ; Extracellular matrix ; Femur ; Femur - diagnostic imaging ; Femur - drug effects ; Gene expression ; Imaging, Three-Dimensional ; Implantation ; Intracellular Space - metabolism ; Life Sciences &amp; Biomedicine ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - drug effects ; Mesenchyme ; Mineralization ; Morphology ; Nanomaterials ; nanoporous network structures ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; non-thermal plasma treatment ; Osseointegration ; Osseointegration - drug effects ; Osteocalcin - metabolism ; Osteogenesis ; Osteogenesis - drug effects ; peri-implantitis ; Photoelectron Spectroscopy ; Physical Sciences ; Plasma ; Plasma Gases - pharmacology ; Plasma generators ; Prostheses and Implants ; Rats, Sprague-Dawley ; Reactive Oxygen Species - metabolism ; Scanning electron microscopy ; Science &amp; Technology ; Stem cell transplantation ; Stem cells ; Surface Properties ; Surface roughness ; Surgical implants ; Thermal plasmas ; Titanium ; Titanium - pharmacology ; Transplants &amp; implants ; X-Ray Microtomography</subject><ispartof>International journal of molecular sciences, 2020-05, Vol.21 (10), p.3533, Article 3533</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000539312100129</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c544t-4450e2fa0e19dae292a33f353af26680b76f040bcfc83ead10e2496ac570db9d3</citedby><cites>FETCH-LOGICAL-c544t-4450e2fa0e19dae292a33f353af26680b76f040bcfc83ead10e2496ac570db9d3</cites><orcidid>0000-0002-6605-9166 ; 0000-0001-5400-8479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278937/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278937/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32429471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Yuhao</creatorcontrib><creatorcontrib>Komasa, Satoshi</creatorcontrib><creatorcontrib>Nishida, Hisataka</creatorcontrib><creatorcontrib>Agariguchi, Akinori</creatorcontrib><creatorcontrib>Sekino, Tohru</creatorcontrib><creatorcontrib>Okazaki, Joji</creatorcontrib><title>Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a handheld non-thermal plasma device could efficiently eliminate biofilm contamination without destroying the surface nanostructure while re-establishing a surface that promoted new bone generation. TNS specimens were treated by a piezoelectric direct discharge (PDD) plasma generator. The effect of decontamination was performed utilizing Staphylococcus aureus. The evaluation of initial cell attachment with adhesion images, alkaline phosphatase activity, extracellular matrix mineralization, and expression of genes related to osteogenesis was performed using rat bone marrow mesenchymal stem cells, and the bone response were evaluated in vivo using a rat femur model. Nanotopography and surface roughness did not significantly differ before and after plasma treatments. Cell and bone formation activity were improved by TNS plasma treatment. Furthermore, plasma treatment effectively eliminated biofilm contamination from the surface. These results suggested that this plasma treatment may be a promising approach for the treatment of nanomaterials immediately before implantation and a therapeutic strategy for peri-implantitis.</description><subject>alkali-treated titanium</subject><subject>Alkaline phosphatase</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Atmospheric pressure</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biocompatibility</subject><subject>biofilm inhibition</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone Morphogenetic Protein 2 - metabolism</subject><subject>Calcium - metabolism</subject><subject>Carbon</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Shape - drug effects</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Contact angle</subject><subject>Contamination</subject><subject>Decontamination</subject><subject>Efficiency</subject><subject>Extracellular matrix</subject><subject>Femur</subject><subject>Femur - diagnostic imaging</subject><subject>Femur - drug effects</subject><subject>Gene expression</subject><subject>Imaging, Three-Dimensional</subject><subject>Implantation</subject><subject>Intracellular Space - metabolism</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Mesenchyme</subject><subject>Mineralization</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>nanoporous network structures</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>non-thermal plasma treatment</subject><subject>Osseointegration</subject><subject>Osseointegration - drug effects</subject><subject>Osteocalcin - metabolism</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>peri-implantitis</subject><subject>Photoelectron Spectroscopy</subject><subject>Physical Sciences</subject><subject>Plasma</subject><subject>Plasma Gases - pharmacology</subject><subject>Plasma generators</subject><subject>Prostheses and Implants</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Scanning electron microscopy</subject><subject>Science &amp; Technology</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Surface Properties</subject><subject>Surface roughness</subject><subject>Surgical implants</subject><subject>Thermal plasmas</subject><subject>Titanium</subject><subject>Titanium - pharmacology</subject><subject>Transplants &amp; implants</subject><subject>X-Ray Microtomography</subject><issn>1661-6596</issn><issn>1422-0067</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqVw44wicSwBfzu-ILVLgUpV28NytiaOs-vVxl5sB9RD_zteUlbtjZM942femdHrqnqL0UdKFfrkNmMiGCPKKX1WHWNGSIOQkM_LXQjcCK7EUfUqpQ1ChBKuXlZHlDCimMTH1f2FX4M3tq9vUrLB-WxXEbILvgbf1-cuNF-sCT7D6PycD0N9DT6kHCeTp1hKly6Dd9NYn0MqYWGug2-WaxtH2NZneQxpVwJn6ttoUyo19e0W0givqxcDbJN983CeVD--XiwX35urm2-Xi7OrxnDGcsMYR5YMgCxWPViiCFA6lIVhIEK0qJNiQAx1ZjAttdDjQjMlwHCJ-k719KS6nHX7ABu9i26EeKcDOP03EeJKQ8zObK0myFDZGsaN6hiTVkHHBMVgFO5VK3jR-jxr7aZutL2xPkfYPhF9-uLdWq_CLy2JbBWVReD9g0AMPyebst6EKfqyvyYMcSo5lnvqw0yZGFKKdjh0wEjvjdePjS_4u8dTHeB_ThfgdAZ-2y4MyThbXD9gCJXGimKCEcJEFbr9f3pR7N__jEWYfKZ_AK0MzL0</recordid><startdate>20200516</startdate><enddate>20200516</enddate><creator>Zeng, Yuhao</creator><creator>Komasa, Satoshi</creator><creator>Nishida, Hisataka</creator><creator>Agariguchi, Akinori</creator><creator>Sekino, Tohru</creator><creator>Okazaki, Joji</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6605-9166</orcidid><orcidid>https://orcid.org/0000-0001-5400-8479</orcidid></search><sort><creationdate>20200516</creationdate><title>Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma</title><author>Zeng, Yuhao ; Komasa, Satoshi ; Nishida, Hisataka ; Agariguchi, Akinori ; Sekino, Tohru ; Okazaki, Joji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-4450e2fa0e19dae292a33f353af26680b76f040bcfc83ead10e2496ac570db9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>alkali-treated titanium</topic><topic>Alkaline phosphatase</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Atmospheric pressure</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biocompatibility</topic><topic>biofilm inhibition</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone Morphogenetic Protein 2 - metabolism</topic><topic>Calcium - metabolism</topic><topic>Carbon</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Shape - drug effects</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Contact angle</topic><topic>Contamination</topic><topic>Decontamination</topic><topic>Efficiency</topic><topic>Extracellular matrix</topic><topic>Femur</topic><topic>Femur - diagnostic imaging</topic><topic>Femur - drug effects</topic><topic>Gene expression</topic><topic>Imaging, Three-Dimensional</topic><topic>Implantation</topic><topic>Intracellular Space - metabolism</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Mesenchyme</topic><topic>Mineralization</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>nanoporous network structures</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>non-thermal plasma treatment</topic><topic>Osseointegration</topic><topic>Osseointegration - drug effects</topic><topic>Osteocalcin - metabolism</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>peri-implantitis</topic><topic>Photoelectron Spectroscopy</topic><topic>Physical Sciences</topic><topic>Plasma</topic><topic>Plasma Gases - pharmacology</topic><topic>Plasma generators</topic><topic>Prostheses and Implants</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Scanning electron microscopy</topic><topic>Science &amp; Technology</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Surface Properties</topic><topic>Surface roughness</topic><topic>Surgical implants</topic><topic>Thermal plasmas</topic><topic>Titanium</topic><topic>Titanium - pharmacology</topic><topic>Transplants &amp; implants</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Yuhao</creatorcontrib><creatorcontrib>Komasa, Satoshi</creatorcontrib><creatorcontrib>Nishida, Hisataka</creatorcontrib><creatorcontrib>Agariguchi, Akinori</creatorcontrib><creatorcontrib>Sekino, Tohru</creatorcontrib><creatorcontrib>Okazaki, Joji</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Yuhao</au><au>Komasa, Satoshi</au><au>Nishida, Hisataka</au><au>Agariguchi, Akinori</au><au>Sekino, Tohru</au><au>Okazaki, Joji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2020-05-16</date><risdate>2020</risdate><volume>21</volume><issue>10</issue><spage>3533</spage><pages>3533-</pages><artnum>3533</artnum><issn>1661-6596</issn><issn>1422-0067</issn><eissn>1422-0067</eissn><abstract>Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a handheld non-thermal plasma device could efficiently eliminate biofilm contamination without destroying the surface nanostructure while re-establishing a surface that promoted new bone generation. TNS specimens were treated by a piezoelectric direct discharge (PDD) plasma generator. The effect of decontamination was performed utilizing Staphylococcus aureus. The evaluation of initial cell attachment with adhesion images, alkaline phosphatase activity, extracellular matrix mineralization, and expression of genes related to osteogenesis was performed using rat bone marrow mesenchymal stem cells, and the bone response were evaluated in vivo using a rat femur model. Nanotopography and surface roughness did not significantly differ before and after plasma treatments. Cell and bone formation activity were improved by TNS plasma treatment. Furthermore, plasma treatment effectively eliminated biofilm contamination from the surface. These results suggested that this plasma treatment may be a promising approach for the treatment of nanomaterials immediately before implantation and a therapeutic strategy for peri-implantitis.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32429471</pmid><doi>10.3390/ijms21103533</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6605-9166</orcidid><orcidid>https://orcid.org/0000-0001-5400-8479</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-6596
ispartof International journal of molecular sciences, 2020-05, Vol.21 (10), p.3533, Article 3533
issn 1661-6596
1422-0067
1422-0067
language eng
recordid cdi_webofscience_primary_000539312100129CitationCount
source MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects alkali-treated titanium
Alkaline phosphatase
Alkaline Phosphatase - metabolism
Animals
Atmospheric pressure
Biochemistry & Molecular Biology
Biocompatibility
biofilm inhibition
Biofilms
Biofilms - drug effects
Biomedical materials
Bone growth
Bone marrow
Bone Morphogenetic Protein 2 - metabolism
Calcium - metabolism
Carbon
Cell adhesion
Cell adhesion & migration
Cell Adhesion - drug effects
Cell Shape - drug effects
Chemical bonds
Chemistry
Chemistry, Multidisciplinary
Contact angle
Contamination
Decontamination
Efficiency
Extracellular matrix
Femur
Femur - diagnostic imaging
Femur - drug effects
Gene expression
Imaging, Three-Dimensional
Implantation
Intracellular Space - metabolism
Life Sciences & Biomedicine
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - drug effects
Mesenchyme
Mineralization
Morphology
Nanomaterials
nanoporous network structures
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology
non-thermal plasma treatment
Osseointegration
Osseointegration - drug effects
Osteocalcin - metabolism
Osteogenesis
Osteogenesis - drug effects
peri-implantitis
Photoelectron Spectroscopy
Physical Sciences
Plasma
Plasma Gases - pharmacology
Plasma generators
Prostheses and Implants
Rats, Sprague-Dawley
Reactive Oxygen Species - metabolism
Scanning electron microscopy
Science & Technology
Stem cell transplantation
Stem cells
Surface Properties
Surface roughness
Surgical implants
Thermal plasmas
Titanium
Titanium - pharmacology
Transplants & implants
X-Ray Microtomography
title Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Osseointegration%20and%20Bio-Decontamination%20of%20Nanostructured%20Titanium%20Based%20on%20Non-Thermal%20Atmospheric%20Pressure%20Plasma&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zeng,%20Yuhao&rft.date=2020-05-16&rft.volume=21&rft.issue=10&rft.spage=3533&rft.pages=3533-&rft.artnum=3533&rft.issn=1661-6596&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21103533&rft_dat=%3Cproquest_webof%3E2405375177%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405375177&rft_id=info:pmid/32429471&rft_doaj_id=oai_doaj_org_article_20c378c45c9b447e9ab4631ac91d9865&rfr_iscdi=true