Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma
Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a han...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-05, Vol.21 (10), p.3533, Article 3533 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 3533 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Zeng, Yuhao Komasa, Satoshi Nishida, Hisataka Agariguchi, Akinori Sekino, Tohru Okazaki, Joji |
description | Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a handheld non-thermal plasma device could efficiently eliminate biofilm contamination without destroying the surface nanostructure while re-establishing a surface that promoted new bone generation. TNS specimens were treated by a piezoelectric direct discharge (PDD) plasma generator. The effect of decontamination was performed utilizing Staphylococcus aureus. The evaluation of initial cell attachment with adhesion images, alkaline phosphatase activity, extracellular matrix mineralization, and expression of genes related to osteogenesis was performed using rat bone marrow mesenchymal stem cells, and the bone response were evaluated in vivo using a rat femur model. Nanotopography and surface roughness did not significantly differ before and after plasma treatments. Cell and bone formation activity were improved by TNS plasma treatment. Furthermore, plasma treatment effectively eliminated biofilm contamination from the surface. These results suggested that this plasma treatment may be a promising approach for the treatment of nanomaterials immediately before implantation and a therapeutic strategy for peri-implantitis. |
doi_str_mv | 10.3390/ijms21103533 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000539312100129CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_20c378c45c9b447e9ab4631ac91d9865</doaj_id><sourcerecordid>2405375177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-4450e2fa0e19dae292a33f353af26680b76f040bcfc83ead10e2496ac570db9d3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqVw44wicSwBfzu-ILVLgUpV28NytiaOs-vVxl5sB9RD_zteUlbtjZM942femdHrqnqL0UdKFfrkNmMiGCPKKX1WHWNGSIOQkM_LXQjcCK7EUfUqpQ1ChBKuXlZHlDCimMTH1f2FX4M3tq9vUrLB-WxXEbILvgbf1-cuNF-sCT7D6PycD0N9DT6kHCeTp1hKly6Dd9NYn0MqYWGug2-WaxtH2NZneQxpVwJn6ttoUyo19e0W0givqxcDbJN983CeVD--XiwX35urm2-Xi7OrxnDGcsMYR5YMgCxWPViiCFA6lIVhIEK0qJNiQAx1ZjAttdDjQjMlwHCJ-k719KS6nHX7ABu9i26EeKcDOP03EeJKQ8zObK0myFDZGsaN6hiTVkHHBMVgFO5VK3jR-jxr7aZutL2xPkfYPhF9-uLdWq_CLy2JbBWVReD9g0AMPyebst6EKfqyvyYMcSo5lnvqw0yZGFKKdjh0wEjvjdePjS_4u8dTHeB_ThfgdAZ-2y4MyThbXD9gCJXGimKCEcJEFbr9f3pR7N__jEWYfKZ_AK0MzL0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405375177</pqid></control><display><type>article</type><title>Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zeng, Yuhao ; Komasa, Satoshi ; Nishida, Hisataka ; Agariguchi, Akinori ; Sekino, Tohru ; Okazaki, Joji</creator><creatorcontrib>Zeng, Yuhao ; Komasa, Satoshi ; Nishida, Hisataka ; Agariguchi, Akinori ; Sekino, Tohru ; Okazaki, Joji</creatorcontrib><description>Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a handheld non-thermal plasma device could efficiently eliminate biofilm contamination without destroying the surface nanostructure while re-establishing a surface that promoted new bone generation. TNS specimens were treated by a piezoelectric direct discharge (PDD) plasma generator. The effect of decontamination was performed utilizing Staphylococcus aureus. The evaluation of initial cell attachment with adhesion images, alkaline phosphatase activity, extracellular matrix mineralization, and expression of genes related to osteogenesis was performed using rat bone marrow mesenchymal stem cells, and the bone response were evaluated in vivo using a rat femur model. Nanotopography and surface roughness did not significantly differ before and after plasma treatments. Cell and bone formation activity were improved by TNS plasma treatment. Furthermore, plasma treatment effectively eliminated biofilm contamination from the surface. These results suggested that this plasma treatment may be a promising approach for the treatment of nanomaterials immediately before implantation and a therapeutic strategy for peri-implantitis.</description><identifier>ISSN: 1661-6596</identifier><identifier>ISSN: 1422-0067</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21103533</identifier><identifier>PMID: 32429471</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>alkali-treated titanium ; Alkaline phosphatase ; Alkaline Phosphatase - metabolism ; Animals ; Atmospheric pressure ; Biochemistry & Molecular Biology ; Biocompatibility ; biofilm inhibition ; Biofilms ; Biofilms - drug effects ; Biomedical materials ; Bone growth ; Bone marrow ; Bone Morphogenetic Protein 2 - metabolism ; Calcium - metabolism ; Carbon ; Cell adhesion ; Cell adhesion & migration ; Cell Adhesion - drug effects ; Cell Shape - drug effects ; Chemical bonds ; Chemistry ; Chemistry, Multidisciplinary ; Contact angle ; Contamination ; Decontamination ; Efficiency ; Extracellular matrix ; Femur ; Femur - diagnostic imaging ; Femur - drug effects ; Gene expression ; Imaging, Three-Dimensional ; Implantation ; Intracellular Space - metabolism ; Life Sciences & Biomedicine ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - drug effects ; Mesenchyme ; Mineralization ; Morphology ; Nanomaterials ; nanoporous network structures ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; non-thermal plasma treatment ; Osseointegration ; Osseointegration - drug effects ; Osteocalcin - metabolism ; Osteogenesis ; Osteogenesis - drug effects ; peri-implantitis ; Photoelectron Spectroscopy ; Physical Sciences ; Plasma ; Plasma Gases - pharmacology ; Plasma generators ; Prostheses and Implants ; Rats, Sprague-Dawley ; Reactive Oxygen Species - metabolism ; Scanning electron microscopy ; Science & Technology ; Stem cell transplantation ; Stem cells ; Surface Properties ; Surface roughness ; Surgical implants ; Thermal plasmas ; Titanium ; Titanium - pharmacology ; Transplants & implants ; X-Ray Microtomography</subject><ispartof>International journal of molecular sciences, 2020-05, Vol.21 (10), p.3533, Article 3533</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000539312100129</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c544t-4450e2fa0e19dae292a33f353af26680b76f040bcfc83ead10e2496ac570db9d3</citedby><cites>FETCH-LOGICAL-c544t-4450e2fa0e19dae292a33f353af26680b76f040bcfc83ead10e2496ac570db9d3</cites><orcidid>0000-0002-6605-9166 ; 0000-0001-5400-8479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278937/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278937/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32429471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Yuhao</creatorcontrib><creatorcontrib>Komasa, Satoshi</creatorcontrib><creatorcontrib>Nishida, Hisataka</creatorcontrib><creatorcontrib>Agariguchi, Akinori</creatorcontrib><creatorcontrib>Sekino, Tohru</creatorcontrib><creatorcontrib>Okazaki, Joji</creatorcontrib><title>Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a handheld non-thermal plasma device could efficiently eliminate biofilm contamination without destroying the surface nanostructure while re-establishing a surface that promoted new bone generation. TNS specimens were treated by a piezoelectric direct discharge (PDD) plasma generator. The effect of decontamination was performed utilizing Staphylococcus aureus. The evaluation of initial cell attachment with adhesion images, alkaline phosphatase activity, extracellular matrix mineralization, and expression of genes related to osteogenesis was performed using rat bone marrow mesenchymal stem cells, and the bone response were evaluated in vivo using a rat femur model. Nanotopography and surface roughness did not significantly differ before and after plasma treatments. Cell and bone formation activity were improved by TNS plasma treatment. Furthermore, plasma treatment effectively eliminated biofilm contamination from the surface. These results suggested that this plasma treatment may be a promising approach for the treatment of nanomaterials immediately before implantation and a therapeutic strategy for peri-implantitis.</description><subject>alkali-treated titanium</subject><subject>Alkaline phosphatase</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Atmospheric pressure</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biocompatibility</subject><subject>biofilm inhibition</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone Morphogenetic Protein 2 - metabolism</subject><subject>Calcium - metabolism</subject><subject>Carbon</subject><subject>Cell adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Shape - drug effects</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Contact angle</subject><subject>Contamination</subject><subject>Decontamination</subject><subject>Efficiency</subject><subject>Extracellular matrix</subject><subject>Femur</subject><subject>Femur - diagnostic imaging</subject><subject>Femur - drug effects</subject><subject>Gene expression</subject><subject>Imaging, Three-Dimensional</subject><subject>Implantation</subject><subject>Intracellular Space - metabolism</subject><subject>Life Sciences & Biomedicine</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Mesenchyme</subject><subject>Mineralization</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>nanoporous network structures</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>non-thermal plasma treatment</subject><subject>Osseointegration</subject><subject>Osseointegration - drug effects</subject><subject>Osteocalcin - metabolism</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>peri-implantitis</subject><subject>Photoelectron Spectroscopy</subject><subject>Physical Sciences</subject><subject>Plasma</subject><subject>Plasma Gases - pharmacology</subject><subject>Plasma generators</subject><subject>Prostheses and Implants</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Scanning electron microscopy</subject><subject>Science & Technology</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Surface Properties</subject><subject>Surface roughness</subject><subject>Surgical implants</subject><subject>Thermal plasmas</subject><subject>Titanium</subject><subject>Titanium - pharmacology</subject><subject>Transplants & implants</subject><subject>X-Ray Microtomography</subject><issn>1661-6596</issn><issn>1422-0067</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqVw44wicSwBfzu-ILVLgUpV28NytiaOs-vVxl5sB9RD_zteUlbtjZM942femdHrqnqL0UdKFfrkNmMiGCPKKX1WHWNGSIOQkM_LXQjcCK7EUfUqpQ1ChBKuXlZHlDCimMTH1f2FX4M3tq9vUrLB-WxXEbILvgbf1-cuNF-sCT7D6PycD0N9DT6kHCeTp1hKly6Dd9NYn0MqYWGug2-WaxtH2NZneQxpVwJn6ttoUyo19e0W0givqxcDbJN983CeVD--XiwX35urm2-Xi7OrxnDGcsMYR5YMgCxWPViiCFA6lIVhIEK0qJNiQAx1ZjAttdDjQjMlwHCJ-k719KS6nHX7ABu9i26EeKcDOP03EeJKQ8zObK0myFDZGsaN6hiTVkHHBMVgFO5VK3jR-jxr7aZutL2xPkfYPhF9-uLdWq_CLy2JbBWVReD9g0AMPyebst6EKfqyvyYMcSo5lnvqw0yZGFKKdjh0wEjvjdePjS_4u8dTHeB_ThfgdAZ-2y4MyThbXD9gCJXGimKCEcJEFbr9f3pR7N__jEWYfKZ_AK0MzL0</recordid><startdate>20200516</startdate><enddate>20200516</enddate><creator>Zeng, Yuhao</creator><creator>Komasa, Satoshi</creator><creator>Nishida, Hisataka</creator><creator>Agariguchi, Akinori</creator><creator>Sekino, Tohru</creator><creator>Okazaki, Joji</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6605-9166</orcidid><orcidid>https://orcid.org/0000-0001-5400-8479</orcidid></search><sort><creationdate>20200516</creationdate><title>Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma</title><author>Zeng, Yuhao ; Komasa, Satoshi ; Nishida, Hisataka ; Agariguchi, Akinori ; Sekino, Tohru ; Okazaki, Joji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-4450e2fa0e19dae292a33f353af26680b76f040bcfc83ead10e2496ac570db9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>alkali-treated titanium</topic><topic>Alkaline phosphatase</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Atmospheric pressure</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biocompatibility</topic><topic>biofilm inhibition</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone Morphogenetic Protein 2 - metabolism</topic><topic>Calcium - metabolism</topic><topic>Carbon</topic><topic>Cell adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Shape - drug effects</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Contact angle</topic><topic>Contamination</topic><topic>Decontamination</topic><topic>Efficiency</topic><topic>Extracellular matrix</topic><topic>Femur</topic><topic>Femur - diagnostic imaging</topic><topic>Femur - drug effects</topic><topic>Gene expression</topic><topic>Imaging, Three-Dimensional</topic><topic>Implantation</topic><topic>Intracellular Space - metabolism</topic><topic>Life Sciences & Biomedicine</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Mesenchyme</topic><topic>Mineralization</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>nanoporous network structures</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>non-thermal plasma treatment</topic><topic>Osseointegration</topic><topic>Osseointegration - drug effects</topic><topic>Osteocalcin - metabolism</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>peri-implantitis</topic><topic>Photoelectron Spectroscopy</topic><topic>Physical Sciences</topic><topic>Plasma</topic><topic>Plasma Gases - pharmacology</topic><topic>Plasma generators</topic><topic>Prostheses and Implants</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Scanning electron microscopy</topic><topic>Science & Technology</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Surface Properties</topic><topic>Surface roughness</topic><topic>Surgical implants</topic><topic>Thermal plasmas</topic><topic>Titanium</topic><topic>Titanium - pharmacology</topic><topic>Transplants & implants</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Yuhao</creatorcontrib><creatorcontrib>Komasa, Satoshi</creatorcontrib><creatorcontrib>Nishida, Hisataka</creatorcontrib><creatorcontrib>Agariguchi, Akinori</creatorcontrib><creatorcontrib>Sekino, Tohru</creatorcontrib><creatorcontrib>Okazaki, Joji</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Yuhao</au><au>Komasa, Satoshi</au><au>Nishida, Hisataka</au><au>Agariguchi, Akinori</au><au>Sekino, Tohru</au><au>Okazaki, Joji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2020-05-16</date><risdate>2020</risdate><volume>21</volume><issue>10</issue><spage>3533</spage><pages>3533-</pages><artnum>3533</artnum><issn>1661-6596</issn><issn>1422-0067</issn><eissn>1422-0067</eissn><abstract>Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a handheld non-thermal plasma device could efficiently eliminate biofilm contamination without destroying the surface nanostructure while re-establishing a surface that promoted new bone generation. TNS specimens were treated by a piezoelectric direct discharge (PDD) plasma generator. The effect of decontamination was performed utilizing Staphylococcus aureus. The evaluation of initial cell attachment with adhesion images, alkaline phosphatase activity, extracellular matrix mineralization, and expression of genes related to osteogenesis was performed using rat bone marrow mesenchymal stem cells, and the bone response were evaluated in vivo using a rat femur model. Nanotopography and surface roughness did not significantly differ before and after plasma treatments. Cell and bone formation activity were improved by TNS plasma treatment. Furthermore, plasma treatment effectively eliminated biofilm contamination from the surface. These results suggested that this plasma treatment may be a promising approach for the treatment of nanomaterials immediately before implantation and a therapeutic strategy for peri-implantitis.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32429471</pmid><doi>10.3390/ijms21103533</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6605-9166</orcidid><orcidid>https://orcid.org/0000-0001-5400-8479</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-6596 |
ispartof | International journal of molecular sciences, 2020-05, Vol.21 (10), p.3533, Article 3533 |
issn | 1661-6596 1422-0067 1422-0067 |
language | eng |
recordid | cdi_webofscience_primary_000539312100129CitationCount |
source | MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | alkali-treated titanium Alkaline phosphatase Alkaline Phosphatase - metabolism Animals Atmospheric pressure Biochemistry & Molecular Biology Biocompatibility biofilm inhibition Biofilms Biofilms - drug effects Biomedical materials Bone growth Bone marrow Bone Morphogenetic Protein 2 - metabolism Calcium - metabolism Carbon Cell adhesion Cell adhesion & migration Cell Adhesion - drug effects Cell Shape - drug effects Chemical bonds Chemistry Chemistry, Multidisciplinary Contact angle Contamination Decontamination Efficiency Extracellular matrix Femur Femur - diagnostic imaging Femur - drug effects Gene expression Imaging, Three-Dimensional Implantation Intracellular Space - metabolism Life Sciences & Biomedicine Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - drug effects Mesenchyme Mineralization Morphology Nanomaterials nanoporous network structures Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology non-thermal plasma treatment Osseointegration Osseointegration - drug effects Osteocalcin - metabolism Osteogenesis Osteogenesis - drug effects peri-implantitis Photoelectron Spectroscopy Physical Sciences Plasma Plasma Gases - pharmacology Plasma generators Prostheses and Implants Rats, Sprague-Dawley Reactive Oxygen Species - metabolism Scanning electron microscopy Science & Technology Stem cell transplantation Stem cells Surface Properties Surface roughness Surgical implants Thermal plasmas Titanium Titanium - pharmacology Transplants & implants X-Ray Microtomography |
title | Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Osseointegration%20and%20Bio-Decontamination%20of%20Nanostructured%20Titanium%20Based%20on%20Non-Thermal%20Atmospheric%20Pressure%20Plasma&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zeng,%20Yuhao&rft.date=2020-05-16&rft.volume=21&rft.issue=10&rft.spage=3533&rft.pages=3533-&rft.artnum=3533&rft.issn=1661-6596&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21103533&rft_dat=%3Cproquest_webof%3E2405375177%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405375177&rft_id=info:pmid/32429471&rft_doaj_id=oai_doaj_org_article_20c378c45c9b447e9ab4631ac91d9865&rfr_iscdi=true |