An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads

Accurate forecasting of demand load is momentous for the efficient economic dispatch of generating units with enormous economic and reliability implications. However, with the high integration levels of grid-tie generations, the precariousness in demand load forecasts is unreliable. This paper propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-05, Vol.13 (10), p.2658, Article 2658
Hauptverfasser: Agyeman, Kofi Afrifa, Kim, Gyeonggak, Jo, Hoonyeon, Park, Seunghyeon, Han, Sekyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 2658
container_title Energies (Basel)
container_volume 13
creator Agyeman, Kofi Afrifa
Kim, Gyeonggak
Jo, Hoonyeon
Park, Seunghyeon
Han, Sekyung
description Accurate forecasting of demand load is momentous for the efficient economic dispatch of generating units with enormous economic and reliability implications. However, with the high integration levels of grid-tie generations, the precariousness in demand load forecasts is unreliable. This paper proposes a data-driven stochastic ensemble model framework for short-term and long-term demand load forecasts. Our proposed framework reduces uncertainties in the load forecast by fusing homogenous models that capture the dynamics in load state characteristics and exploit model diversities for accurate prediction. The ensemble model caters for factors such as meteorological and exogenous variables that affect load prediction accuracy with adaptable, scalable algorithms that consider weather conditions, load features, and state characteristics of the load. We defined a heuristic trained combiner model and an error correction model to estimate the contributions and compensate for forecast errors of each prediction model, respectively. Acquired data from the Korean Electric Power Company (KEPCO), and building data from the Korea Research Institute, together with testbed datasets, were used to evaluate the developed framework. The results obtained prove the efficacy of the proposed model for demand load forecasting.
doi_str_mv 10.3390/en13102658
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000539257300250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9edd0cbfedc54ce9a6d9e5d295a1d507</doaj_id><sourcerecordid>2407691414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-e6c9db85d57d33de07bfb94189ef839f615ec218e2a6a2ab2b82cfe83f4488fc3</originalsourceid><addsrcrecordid>eNqNkUtPGzEQx62KSkWBSz_BSr2BUvxY79pHFAhFilSpr6s1tsfUaWKD7Qjx7bshiHLsXGY0-s3zT8hHRj8LoekFJiYY5YNU78gx03qYMzqKozfxB3Ja65pOJgQTQhyTb5epu04Vt3aD3feW3W-oLbpumQu6fZjuumWBLT7m8qcLuXS_oETY01exthLtrqHvrnALyXerDL6ekPcBNhVPX_yM_Fxe_1h8ma--3twuLldz1_OxzXFw2lslvRy9EB7paIPVPVMagxI6DEyi40whhwE4WG4VdwGVCH2vVHBiRm4PfX2GtbkvcQvlyWSI5jmRy52BMt2yQaPRe-psQO9k71DD4DVKz7UE5uX0mBn5dOh1X_LDDmsz67wraVrf8J6Og2Y96yfq7EC5kmstGF6nMmr2Eph_Ekzw-QF-RJtDdRGTw9eCSQIpNJejoJRLOtHq_-lFbNBiTou8S038BVXIme0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407691414</pqid></control><display><type>article</type><title>An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Agyeman, Kofi Afrifa ; Kim, Gyeonggak ; Jo, Hoonyeon ; Park, Seunghyeon ; Han, Sekyung</creator><creatorcontrib>Agyeman, Kofi Afrifa ; Kim, Gyeonggak ; Jo, Hoonyeon ; Park, Seunghyeon ; Han, Sekyung</creatorcontrib><description>Accurate forecasting of demand load is momentous for the efficient economic dispatch of generating units with enormous economic and reliability implications. However, with the high integration levels of grid-tie generations, the precariousness in demand load forecasts is unreliable. This paper proposes a data-driven stochastic ensemble model framework for short-term and long-term demand load forecasts. Our proposed framework reduces uncertainties in the load forecast by fusing homogenous models that capture the dynamics in load state characteristics and exploit model diversities for accurate prediction. The ensemble model caters for factors such as meteorological and exogenous variables that affect load prediction accuracy with adaptable, scalable algorithms that consider weather conditions, load features, and state characteristics of the load. We defined a heuristic trained combiner model and an error correction model to estimate the contributions and compensate for forecast errors of each prediction model, respectively. Acquired data from the Korean Electric Power Company (KEPCO), and building data from the Korea Research Institute, together with testbed datasets, were used to evaluate the developed framework. The results obtained prove the efficacy of the proposed model for demand load forecasting.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13102658</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accuracy ; Alternative energy sources ; Bayesian ; Data acquisition ; Data integrity ; Datasets ; deep neural network ; demand load forecast ; distributed load ; Economic forecasting ; Electric power ; Energy &amp; Fuels ; Energy consumption ; ensemble algorithm stochastic ; Error correction ; Forecasting ; K-means ; Loads (forces) ; Methods ; Prediction models ; Science &amp; Technology ; Stochasticity ; Stress concentration ; Technology ; Weather</subject><ispartof>Energies (Basel), 2020-05, Vol.13 (10), p.2658, Article 2658</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000539257300250</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c427t-e6c9db85d57d33de07bfb94189ef839f615ec218e2a6a2ab2b82cfe83f4488fc3</citedby><cites>FETCH-LOGICAL-c427t-e6c9db85d57d33de07bfb94189ef839f615ec218e2a6a2ab2b82cfe83f4488fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,2116,27931,27932,28255</link.rule.ids></links><search><creatorcontrib>Agyeman, Kofi Afrifa</creatorcontrib><creatorcontrib>Kim, Gyeonggak</creatorcontrib><creatorcontrib>Jo, Hoonyeon</creatorcontrib><creatorcontrib>Park, Seunghyeon</creatorcontrib><creatorcontrib>Han, Sekyung</creatorcontrib><title>An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads</title><title>Energies (Basel)</title><addtitle>ENERGIES</addtitle><description>Accurate forecasting of demand load is momentous for the efficient economic dispatch of generating units with enormous economic and reliability implications. However, with the high integration levels of grid-tie generations, the precariousness in demand load forecasts is unreliable. This paper proposes a data-driven stochastic ensemble model framework for short-term and long-term demand load forecasts. Our proposed framework reduces uncertainties in the load forecast by fusing homogenous models that capture the dynamics in load state characteristics and exploit model diversities for accurate prediction. The ensemble model caters for factors such as meteorological and exogenous variables that affect load prediction accuracy with adaptable, scalable algorithms that consider weather conditions, load features, and state characteristics of the load. We defined a heuristic trained combiner model and an error correction model to estimate the contributions and compensate for forecast errors of each prediction model, respectively. Acquired data from the Korean Electric Power Company (KEPCO), and building data from the Korea Research Institute, together with testbed datasets, were used to evaluate the developed framework. The results obtained prove the efficacy of the proposed model for demand load forecasting.</description><subject>Accuracy</subject><subject>Alternative energy sources</subject><subject>Bayesian</subject><subject>Data acquisition</subject><subject>Data integrity</subject><subject>Datasets</subject><subject>deep neural network</subject><subject>demand load forecast</subject><subject>distributed load</subject><subject>Economic forecasting</subject><subject>Electric power</subject><subject>Energy &amp; Fuels</subject><subject>Energy consumption</subject><subject>ensemble algorithm stochastic</subject><subject>Error correction</subject><subject>Forecasting</subject><subject>K-means</subject><subject>Loads (forces)</subject><subject>Methods</subject><subject>Prediction models</subject><subject>Science &amp; Technology</subject><subject>Stochasticity</subject><subject>Stress concentration</subject><subject>Technology</subject><subject>Weather</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUtPGzEQx62KSkWBSz_BSr2BUvxY79pHFAhFilSpr6s1tsfUaWKD7Qjx7bshiHLsXGY0-s3zT8hHRj8LoekFJiYY5YNU78gx03qYMzqKozfxB3Ja65pOJgQTQhyTb5epu04Vt3aD3feW3W-oLbpumQu6fZjuumWBLT7m8qcLuXS_oETY01exthLtrqHvrnALyXerDL6ekPcBNhVPX_yM_Fxe_1h8ma--3twuLldz1_OxzXFw2lslvRy9EB7paIPVPVMagxI6DEyi40whhwE4WG4VdwGVCH2vVHBiRm4PfX2GtbkvcQvlyWSI5jmRy52BMt2yQaPRe-psQO9k71DD4DVKz7UE5uX0mBn5dOh1X_LDDmsz67wraVrf8J6Og2Y96yfq7EC5kmstGF6nMmr2Eph_Ekzw-QF-RJtDdRGTw9eCSQIpNJejoJRLOtHq_-lFbNBiTou8S038BVXIme0</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Agyeman, Kofi Afrifa</creator><creator>Kim, Gyeonggak</creator><creator>Jo, Hoonyeon</creator><creator>Park, Seunghyeon</creator><creator>Han, Sekyung</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20200501</creationdate><title>An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads</title><author>Agyeman, Kofi Afrifa ; Kim, Gyeonggak ; Jo, Hoonyeon ; Park, Seunghyeon ; Han, Sekyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-e6c9db85d57d33de07bfb94189ef839f615ec218e2a6a2ab2b82cfe83f4488fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Alternative energy sources</topic><topic>Bayesian</topic><topic>Data acquisition</topic><topic>Data integrity</topic><topic>Datasets</topic><topic>deep neural network</topic><topic>demand load forecast</topic><topic>distributed load</topic><topic>Economic forecasting</topic><topic>Electric power</topic><topic>Energy &amp; Fuels</topic><topic>Energy consumption</topic><topic>ensemble algorithm stochastic</topic><topic>Error correction</topic><topic>Forecasting</topic><topic>K-means</topic><topic>Loads (forces)</topic><topic>Methods</topic><topic>Prediction models</topic><topic>Science &amp; Technology</topic><topic>Stochasticity</topic><topic>Stress concentration</topic><topic>Technology</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agyeman, Kofi Afrifa</creatorcontrib><creatorcontrib>Kim, Gyeonggak</creatorcontrib><creatorcontrib>Jo, Hoonyeon</creatorcontrib><creatorcontrib>Park, Seunghyeon</creatorcontrib><creatorcontrib>Han, Sekyung</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agyeman, Kofi Afrifa</au><au>Kim, Gyeonggak</au><au>Jo, Hoonyeon</au><au>Park, Seunghyeon</au><au>Han, Sekyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads</atitle><jtitle>Energies (Basel)</jtitle><stitle>ENERGIES</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>13</volume><issue>10</issue><spage>2658</spage><pages>2658-</pages><artnum>2658</artnum><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Accurate forecasting of demand load is momentous for the efficient economic dispatch of generating units with enormous economic and reliability implications. However, with the high integration levels of grid-tie generations, the precariousness in demand load forecasts is unreliable. This paper proposes a data-driven stochastic ensemble model framework for short-term and long-term demand load forecasts. Our proposed framework reduces uncertainties in the load forecast by fusing homogenous models that capture the dynamics in load state characteristics and exploit model diversities for accurate prediction. The ensemble model caters for factors such as meteorological and exogenous variables that affect load prediction accuracy with adaptable, scalable algorithms that consider weather conditions, load features, and state characteristics of the load. We defined a heuristic trained combiner model and an error correction model to estimate the contributions and compensate for forecast errors of each prediction model, respectively. Acquired data from the Korean Electric Power Company (KEPCO), and building data from the Korea Research Institute, together with testbed datasets, were used to evaluate the developed framework. The results obtained prove the efficacy of the proposed model for demand load forecasting.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/en13102658</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2020-05, Vol.13 (10), p.2658, Article 2658
issn 1996-1073
1996-1073
language eng
recordid cdi_webofscience_primary_000539257300250
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Alternative energy sources
Bayesian
Data acquisition
Data integrity
Datasets
deep neural network
demand load forecast
distributed load
Economic forecasting
Electric power
Energy & Fuels
Energy consumption
ensemble algorithm stochastic
Error correction
Forecasting
K-means
Loads (forces)
Methods
Prediction models
Science & Technology
Stochasticity
Stress concentration
Technology
Weather
title An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T12%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ensemble%20Stochastic%20Forecasting%20Framework%20for%20Variable%20Distributed%20Demand%20Loads&rft.jtitle=Energies%20(Basel)&rft.au=Agyeman,%20Kofi%20Afrifa&rft.date=2020-05-01&rft.volume=13&rft.issue=10&rft.spage=2658&rft.pages=2658-&rft.artnum=2658&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13102658&rft_dat=%3Cproquest_webof%3E2407691414%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407691414&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_9edd0cbfedc54ce9a6d9e5d295a1d507&rfr_iscdi=true