An orally administered butyrate-releasing xylan derivative reduces inflammation in dextran sulphate sodium-induced murine colitis

Butyrate has been shown to be effective in ulcerative colitis (UC). However, its oral administration is rare due to its rancid odour and unpleasant taste. In this study, the effect of a butyrate-releasing polysaccharide derivative, xylan butyrate ester (XylB), was evaluated in a dextran sodium sulph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2020-08, Vol.156, p.1217-1233
Hauptverfasser: Zha, Zhengqi, Lv, Yang, Tang, Huiling, Li, Tingting, Miao, Yinghua, Cheng, Junwei, Wang, Guoqing, Tan, Yanfang, Zhu, Yan, Xing, Xiao, Ding, Kang, Wang, Ying, Yin, Hongping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Butyrate has been shown to be effective in ulcerative colitis (UC). However, its oral administration is rare due to its rancid odour and unpleasant taste. In this study, the effect of a butyrate-releasing polysaccharide derivative, xylan butyrate ester (XylB), was evaluated in a dextran sodium sulphate (DSS)-induced UC model in C57BL/6 mice. Linear xylan was extracted from corn cobs. The C-2 and C-3 positions of the linear xylan were esterified with butyrate, forming XylB. The protective and therapeutic effects of XylB against UC were determined in a DSS-induced mouse model. The results showed that XylB treatments reversed the imbalance between pro- and anti-inflammatory cytokines. Moreover, XylB rebalanced the gut microbiota that interfered with DSS treatment and significantly decreased the relative abundance of the genera Oscillibacter, Ruminococcaceae UCG-009, Erysipelatoclostridium, and Defluviitaleaceae UCG-01. XylB increased butyrate content in the colon, upregulated G-protein coupled receptor 109A protein expression, inhibited histone deacetylase (HDAC) activity, and exerted anti-inflammatory activity through autophagy pathway activation and nuclear factor-κB (NF-κB) inhibition. XylB reduces inflammatory intestinal damage in mice, suggesting that it would be a potential drug for the treatment of UC and could be used to overcome the limitations of the oral administration of sodium butyrate.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2019.11.159