Picosecond laser surface modification of aluminum oxide with fish-scale structures for cell culture
The surface modification of a layer substrate has received attention for many biomedical applications (e.g., tissue engineering and biosensing). Under an in situ control, we proposed a strategy for surface modification of hard and brittle ceramics with ultrafast laser pulses for cell culture. A type...
Gespeichert in:
Veröffentlicht in: | Ceramics international 2020-08, Vol.46 (11), p.17651-17658 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The surface modification of a layer substrate has received attention for many biomedical applications (e.g., tissue engineering and biosensing). Under an in situ control, we proposed a strategy for surface modification of hard and brittle ceramics with ultrafast laser pulses for cell culture. A type of ultrafast laser based on the picosecond pulse technique was employed to ablate the surface of a pristine aluminum oxide (Al2O3) substrate. The surface of the formed reproducible micro-nanostructures indicated the fish-scale structures, which was analyzed under different laser ablation conditions. Subsequently, the SV40 T-antigen human embryonic kidney 293 (HEK293T) cells were cultured on the laser-ablated Al2O3 substrates. These microstructures and nanostructures can enhance cell proliferation response. The surface effect played a crucial role, by which the surface roughness (Ra) and contact angle (CA) of water droplets on the ablated Al2O3 substrate increased with the increasing laser fluence. The formed fish-scale structures were formed by the parameters of laser ablation where the structural characteristics of the Al2O3 substrate can be remained in the ultrafast laser process. The presented process provides a simple support for developing ablated structures on the Al2O3 substrate for cell culture. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2020.04.067 |