Homogeneous charge compression ignition combustion stability improvement using a rapid ignition system
When compared to traditional engines, homogeneous charge compression ignition has the potential to significantly reduce NO x raw emissions, while maintaining a high fuel efficiency. Homogeneous charge compression ignition is characterized by compression-induced autoignition of a lean homogeneous air...
Gespeichert in:
Veröffentlicht in: | International journal of engine research 2020-12, Vol.21 (10), p.1846-1856, Article 1468087420917769 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1856 |
---|---|
container_issue | 10 |
container_start_page | 1846 |
container_title | International journal of engine research |
container_volume | 21 |
creator | Gordon, David Wouters, Christian Kinoshita, Shota Wick, Maximilian Lehrheuer, Bastian Andert, Jakob Pischinger, Stefan Koch, Charles R |
description | When compared to traditional engines, homogeneous charge compression ignition has the potential to significantly reduce NO
x
raw emissions, while maintaining a high fuel efficiency. Homogeneous charge compression ignition is characterized by compression-induced autoignition of a lean homogeneous air–fuel mixture. Since homogeneous charge compression ignition does not utilize direct ignition control, it is strongly dependent on the state of the cylinder charge and can suffer from high cyclic variability. With spark-assisted compression ignition, it has been demonstrated that misfires can be reduced, while preserving the high thermal efficiency of homogeneous charge compression ignition as a result of the more favorable physical mixture properties due to dilution. However, spark-assisted compression ignition reduces the NO
x
benefits of homogeneous charge compression ignition, as it increases the local combustion temperatures. To merge the advantages of the homogeneous charge compression ignition and the spark-assisted compression ignition combustion processes, a field-programmable gate array for detailed simulation of the physical gas exchange is combined with a rapid spark system. The low latency and computational speed of the field-programmable gate array allows the simulation process to be implemented in real time. When combined with the rapid reaction time of the high-frequency current-based rapid ignition system, a feedforward controller based on the cylinder pressure or heat release is realized. The developed model-based controller determines if a spark is required to assist the homogeneous charge compression ignition combustion process. The use of the field-programmable gate array and rapid ignition system allows for the calculation of combustion properties and controller output within 0.1 °CA. This article presents the development and experimental validation of the developed controller on a single-cylinder research engine. The combustion stability has been significantly improved as reflected in an improved standard deviation of the indicated mean effective pressure and a reduction of the combustion phasing variations. Furthermore, compared to a traditional homogeneous charge compression ignition system, the hydrocarbon emissions can be reduced, while maintaining low NO
x
emissions. |
doi_str_mv | 10.1177/1468087420917769 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000537199100001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1468087420917769</sage_id><sourcerecordid>2448829553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-f70f7c8a11116e44ed97d514f522c0cbac93a94402ecba5939b79e412513245b3</originalsourceid><addsrcrecordid>eNqNkM1LxDAQxYMouK7ePRY8SjVf3TRHKeoKghc9lzQ7rVm2yZqkyv73plZcEARzyZvM-yUvg9A5wVeECHFN-KLEpeAUy1Qu5AGaUcxJzgiXh2g2tvOxf4xOQlhjjAsuxAy1S9e7Diy4IWT6VfkOMu36rYcQjLOZ6ayJo0iHzRC-ZIiqMRsTd5lJRvcOPdiYDcHYLlOZV1uz2nNhFyL0p-ioVZsAZ9_7HL3c3T5Xy_zx6f6hunnMNcMy5q3ArdClImktgHNYSbEqCG8LSjXWjdKSKck5ppCKQjLZCAmc0IIwyouGzdHFdG_K9TZAiPXaDd6mJ2vKeVlSWRQsufDk0t6F4KGtt970yu9qgutxmvXvaSaknJAPaFwbtAGr4Qcbx8kEkZIkhUlloho_X7nBxoRe_h9N7nxyB9XBPv2fwT4BOsiWug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448829553</pqid></control><display><type>article</type><title>Homogeneous charge compression ignition combustion stability improvement using a rapid ignition system</title><source>Access via SAGE</source><creator>Gordon, David ; Wouters, Christian ; Kinoshita, Shota ; Wick, Maximilian ; Lehrheuer, Bastian ; Andert, Jakob ; Pischinger, Stefan ; Koch, Charles R</creator><creatorcontrib>Gordon, David ; Wouters, Christian ; Kinoshita, Shota ; Wick, Maximilian ; Lehrheuer, Bastian ; Andert, Jakob ; Pischinger, Stefan ; Koch, Charles R</creatorcontrib><description>When compared to traditional engines, homogeneous charge compression ignition has the potential to significantly reduce NO
x
raw emissions, while maintaining a high fuel efficiency. Homogeneous charge compression ignition is characterized by compression-induced autoignition of a lean homogeneous air–fuel mixture. Since homogeneous charge compression ignition does not utilize direct ignition control, it is strongly dependent on the state of the cylinder charge and can suffer from high cyclic variability. With spark-assisted compression ignition, it has been demonstrated that misfires can be reduced, while preserving the high thermal efficiency of homogeneous charge compression ignition as a result of the more favorable physical mixture properties due to dilution. However, spark-assisted compression ignition reduces the NO
x
benefits of homogeneous charge compression ignition, as it increases the local combustion temperatures. To merge the advantages of the homogeneous charge compression ignition and the spark-assisted compression ignition combustion processes, a field-programmable gate array for detailed simulation of the physical gas exchange is combined with a rapid spark system. The low latency and computational speed of the field-programmable gate array allows the simulation process to be implemented in real time. When combined with the rapid reaction time of the high-frequency current-based rapid ignition system, a feedforward controller based on the cylinder pressure or heat release is realized. The developed model-based controller determines if a spark is required to assist the homogeneous charge compression ignition combustion process. The use of the field-programmable gate array and rapid ignition system allows for the calculation of combustion properties and controller output within 0.1 °CA. This article presents the development and experimental validation of the developed controller on a single-cylinder research engine. The combustion stability has been significantly improved as reflected in an improved standard deviation of the indicated mean effective pressure and a reduction of the combustion phasing variations. Furthermore, compared to a traditional homogeneous charge compression ignition system, the hydrocarbon emissions can be reduced, while maintaining low NO
x
emissions.</description><identifier>ISSN: 1468-0874</identifier><identifier>EISSN: 2041-3149</identifier><identifier>DOI: 10.1177/1468087420917769</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Charge efficiency ; Combustion stability ; Control stability ; Controllers ; Dilution ; Engine cylinders ; Engineering ; Engineering, Mechanical ; Feedforward control ; Field programmable gate arrays ; Fuel mixtures ; Gas exchange ; Heat exchange ; Ignition systems ; Nitrogen oxides ; Physical Sciences ; Reaction time ; Science & Technology ; Spontaneous combustion ; Technology ; Thermodynamic efficiency ; Thermodynamics ; Transportation ; Transportation Science & Technology</subject><ispartof>International journal of engine research, 2020-12, Vol.21 (10), p.1846-1856, Article 1468087420917769</ispartof><rights>IMechE 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000537199100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c309t-f70f7c8a11116e44ed97d514f522c0cbac93a94402ecba5939b79e412513245b3</citedby><cites>FETCH-LOGICAL-c309t-f70f7c8a11116e44ed97d514f522c0cbac93a94402ecba5939b79e412513245b3</cites><orcidid>0000-0002-7999-8234 ; 0000-0002-6754-1907 ; 0000-0002-6094-5933 ; 0000-0002-2562-3146 ; 0000-0001-5065-6938 ; 0000-0001-5033-930X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1468087420917769$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1468087420917769$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21823,27928,27929,43625,43626</link.rule.ids></links><search><creatorcontrib>Gordon, David</creatorcontrib><creatorcontrib>Wouters, Christian</creatorcontrib><creatorcontrib>Kinoshita, Shota</creatorcontrib><creatorcontrib>Wick, Maximilian</creatorcontrib><creatorcontrib>Lehrheuer, Bastian</creatorcontrib><creatorcontrib>Andert, Jakob</creatorcontrib><creatorcontrib>Pischinger, Stefan</creatorcontrib><creatorcontrib>Koch, Charles R</creatorcontrib><title>Homogeneous charge compression ignition combustion stability improvement using a rapid ignition system</title><title>International journal of engine research</title><addtitle>INT J ENGINE RES</addtitle><description>When compared to traditional engines, homogeneous charge compression ignition has the potential to significantly reduce NO
x
raw emissions, while maintaining a high fuel efficiency. Homogeneous charge compression ignition is characterized by compression-induced autoignition of a lean homogeneous air–fuel mixture. Since homogeneous charge compression ignition does not utilize direct ignition control, it is strongly dependent on the state of the cylinder charge and can suffer from high cyclic variability. With spark-assisted compression ignition, it has been demonstrated that misfires can be reduced, while preserving the high thermal efficiency of homogeneous charge compression ignition as a result of the more favorable physical mixture properties due to dilution. However, spark-assisted compression ignition reduces the NO
x
benefits of homogeneous charge compression ignition, as it increases the local combustion temperatures. To merge the advantages of the homogeneous charge compression ignition and the spark-assisted compression ignition combustion processes, a field-programmable gate array for detailed simulation of the physical gas exchange is combined with a rapid spark system. The low latency and computational speed of the field-programmable gate array allows the simulation process to be implemented in real time. When combined with the rapid reaction time of the high-frequency current-based rapid ignition system, a feedforward controller based on the cylinder pressure or heat release is realized. The developed model-based controller determines if a spark is required to assist the homogeneous charge compression ignition combustion process. The use of the field-programmable gate array and rapid ignition system allows for the calculation of combustion properties and controller output within 0.1 °CA. This article presents the development and experimental validation of the developed controller on a single-cylinder research engine. The combustion stability has been significantly improved as reflected in an improved standard deviation of the indicated mean effective pressure and a reduction of the combustion phasing variations. Furthermore, compared to a traditional homogeneous charge compression ignition system, the hydrocarbon emissions can be reduced, while maintaining low NO
x
emissions.</description><subject>Charge efficiency</subject><subject>Combustion stability</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Dilution</subject><subject>Engine cylinders</subject><subject>Engineering</subject><subject>Engineering, Mechanical</subject><subject>Feedforward control</subject><subject>Field programmable gate arrays</subject><subject>Fuel mixtures</subject><subject>Gas exchange</subject><subject>Heat exchange</subject><subject>Ignition systems</subject><subject>Nitrogen oxides</subject><subject>Physical Sciences</subject><subject>Reaction time</subject><subject>Science & Technology</subject><subject>Spontaneous combustion</subject><subject>Technology</subject><subject>Thermodynamic efficiency</subject><subject>Thermodynamics</subject><subject>Transportation</subject><subject>Transportation Science & Technology</subject><issn>1468-0874</issn><issn>2041-3149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM1LxDAQxYMouK7ePRY8SjVf3TRHKeoKghc9lzQ7rVm2yZqkyv73plZcEARzyZvM-yUvg9A5wVeECHFN-KLEpeAUy1Qu5AGaUcxJzgiXh2g2tvOxf4xOQlhjjAsuxAy1S9e7Diy4IWT6VfkOMu36rYcQjLOZ6ayJo0iHzRC-ZIiqMRsTd5lJRvcOPdiYDcHYLlOZV1uz2nNhFyL0p-ioVZsAZ9_7HL3c3T5Xy_zx6f6hunnMNcMy5q3ArdClImktgHNYSbEqCG8LSjXWjdKSKck5ppCKQjLZCAmc0IIwyouGzdHFdG_K9TZAiPXaDd6mJ2vKeVlSWRQsufDk0t6F4KGtt970yu9qgutxmvXvaSaknJAPaFwbtAGr4Qcbx8kEkZIkhUlloho_X7nBxoRe_h9N7nxyB9XBPv2fwT4BOsiWug</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Gordon, David</creator><creator>Wouters, Christian</creator><creator>Kinoshita, Shota</creator><creator>Wick, Maximilian</creator><creator>Lehrheuer, Bastian</creator><creator>Andert, Jakob</creator><creator>Pischinger, Stefan</creator><creator>Koch, Charles R</creator><general>SAGE Publications</general><general>Sage</general><general>SAGE PUBLICATIONS, INC</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-7999-8234</orcidid><orcidid>https://orcid.org/0000-0002-6754-1907</orcidid><orcidid>https://orcid.org/0000-0002-6094-5933</orcidid><orcidid>https://orcid.org/0000-0002-2562-3146</orcidid><orcidid>https://orcid.org/0000-0001-5065-6938</orcidid><orcidid>https://orcid.org/0000-0001-5033-930X</orcidid></search><sort><creationdate>202012</creationdate><title>Homogeneous charge compression ignition combustion stability improvement using a rapid ignition system</title><author>Gordon, David ; Wouters, Christian ; Kinoshita, Shota ; Wick, Maximilian ; Lehrheuer, Bastian ; Andert, Jakob ; Pischinger, Stefan ; Koch, Charles R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-f70f7c8a11116e44ed97d514f522c0cbac93a94402ecba5939b79e412513245b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge efficiency</topic><topic>Combustion stability</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Dilution</topic><topic>Engine cylinders</topic><topic>Engineering</topic><topic>Engineering, Mechanical</topic><topic>Feedforward control</topic><topic>Field programmable gate arrays</topic><topic>Fuel mixtures</topic><topic>Gas exchange</topic><topic>Heat exchange</topic><topic>Ignition systems</topic><topic>Nitrogen oxides</topic><topic>Physical Sciences</topic><topic>Reaction time</topic><topic>Science & Technology</topic><topic>Spontaneous combustion</topic><topic>Technology</topic><topic>Thermodynamic efficiency</topic><topic>Thermodynamics</topic><topic>Transportation</topic><topic>Transportation Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, David</creatorcontrib><creatorcontrib>Wouters, Christian</creatorcontrib><creatorcontrib>Kinoshita, Shota</creatorcontrib><creatorcontrib>Wick, Maximilian</creatorcontrib><creatorcontrib>Lehrheuer, Bastian</creatorcontrib><creatorcontrib>Andert, Jakob</creatorcontrib><creatorcontrib>Pischinger, Stefan</creatorcontrib><creatorcontrib>Koch, Charles R</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>International journal of engine research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, David</au><au>Wouters, Christian</au><au>Kinoshita, Shota</au><au>Wick, Maximilian</au><au>Lehrheuer, Bastian</au><au>Andert, Jakob</au><au>Pischinger, Stefan</au><au>Koch, Charles R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogeneous charge compression ignition combustion stability improvement using a rapid ignition system</atitle><jtitle>International journal of engine research</jtitle><stitle>INT J ENGINE RES</stitle><date>2020-12</date><risdate>2020</risdate><volume>21</volume><issue>10</issue><spage>1846</spage><epage>1856</epage><pages>1846-1856</pages><artnum>1468087420917769</artnum><issn>1468-0874</issn><eissn>2041-3149</eissn><abstract>When compared to traditional engines, homogeneous charge compression ignition has the potential to significantly reduce NO
x
raw emissions, while maintaining a high fuel efficiency. Homogeneous charge compression ignition is characterized by compression-induced autoignition of a lean homogeneous air–fuel mixture. Since homogeneous charge compression ignition does not utilize direct ignition control, it is strongly dependent on the state of the cylinder charge and can suffer from high cyclic variability. With spark-assisted compression ignition, it has been demonstrated that misfires can be reduced, while preserving the high thermal efficiency of homogeneous charge compression ignition as a result of the more favorable physical mixture properties due to dilution. However, spark-assisted compression ignition reduces the NO
x
benefits of homogeneous charge compression ignition, as it increases the local combustion temperatures. To merge the advantages of the homogeneous charge compression ignition and the spark-assisted compression ignition combustion processes, a field-programmable gate array for detailed simulation of the physical gas exchange is combined with a rapid spark system. The low latency and computational speed of the field-programmable gate array allows the simulation process to be implemented in real time. When combined with the rapid reaction time of the high-frequency current-based rapid ignition system, a feedforward controller based on the cylinder pressure or heat release is realized. The developed model-based controller determines if a spark is required to assist the homogeneous charge compression ignition combustion process. The use of the field-programmable gate array and rapid ignition system allows for the calculation of combustion properties and controller output within 0.1 °CA. This article presents the development and experimental validation of the developed controller on a single-cylinder research engine. The combustion stability has been significantly improved as reflected in an improved standard deviation of the indicated mean effective pressure and a reduction of the combustion phasing variations. Furthermore, compared to a traditional homogeneous charge compression ignition system, the hydrocarbon emissions can be reduced, while maintaining low NO
x
emissions.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1468087420917769</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7999-8234</orcidid><orcidid>https://orcid.org/0000-0002-6754-1907</orcidid><orcidid>https://orcid.org/0000-0002-6094-5933</orcidid><orcidid>https://orcid.org/0000-0002-2562-3146</orcidid><orcidid>https://orcid.org/0000-0001-5065-6938</orcidid><orcidid>https://orcid.org/0000-0001-5033-930X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-0874 |
ispartof | International journal of engine research, 2020-12, Vol.21 (10), p.1846-1856, Article 1468087420917769 |
issn | 1468-0874 2041-3149 |
language | eng |
recordid | cdi_webofscience_primary_000537199100001 |
source | Access via SAGE |
subjects | Charge efficiency Combustion stability Control stability Controllers Dilution Engine cylinders Engineering Engineering, Mechanical Feedforward control Field programmable gate arrays Fuel mixtures Gas exchange Heat exchange Ignition systems Nitrogen oxides Physical Sciences Reaction time Science & Technology Spontaneous combustion Technology Thermodynamic efficiency Thermodynamics Transportation Transportation Science & Technology |
title | Homogeneous charge compression ignition combustion stability improvement using a rapid ignition system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogeneous%20charge%20compression%20ignition%20combustion%20stability%20improvement%20using%20a%20rapid%20ignition%20system&rft.jtitle=International%20journal%20of%20engine%20research&rft.au=Gordon,%20David&rft.date=2020-12&rft.volume=21&rft.issue=10&rft.spage=1846&rft.epage=1856&rft.pages=1846-1856&rft.artnum=1468087420917769&rft.issn=1468-0874&rft.eissn=2041-3149&rft_id=info:doi/10.1177/1468087420917769&rft_dat=%3Cproquest_webof%3E2448829553%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448829553&rft_id=info:pmid/&rft_sage_id=10.1177_1468087420917769&rfr_iscdi=true |