Control of unsteady partial cavitation and cloud cavitation in marine engineering and hydraulic systems

Cavitation is a process of liquid evaporation, bubble or vapor sheet formation, and further collapse of vapor structures, which plays a destructive role in many industrial applications. In marine transport and hydraulic machinery, cavitation usually occurs nearby the surface of a ship propeller and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2020-05, Vol.32 (5)
Hauptverfasser: Kadivar, Ebrahim, Timoshevskiy, Mikhail V., Nichik, Mikhail Yu, el Moctar, Ould, Schellin, Thomas E., Pervunin, Konstantin S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of fluids (1994)
container_volume 32
creator Kadivar, Ebrahim
Timoshevskiy, Mikhail V.
Nichik, Mikhail Yu
el Moctar, Ould
Schellin, Thomas E.
Pervunin, Konstantin S.
description Cavitation is a process of liquid evaporation, bubble or vapor sheet formation, and further collapse of vapor structures, which plays a destructive role in many industrial applications. In marine transport and hydraulic machinery, cavitation usually occurs nearby the surface of a ship propeller and rudder, impeller blades in a pump, and distributor vanes and runner blades in a hydroturbine and causes various undesirable effects such as vibrations of frameworks and/or moving parts, material erosion, and noise enhancement. Based on an extensive literature review, this research is aimed at an experimental investigation of a passive approach to control cavitation on a benchmark hydrofoil using a wedge-type vortex generator in different flow regimes with a high Reynolds number. In this study, we employed a high-speed imaging method to explore the spatial patterns and time evolutions of cavitation structures and utilized a hydroacoustic pressure transducer to record and analyze local pressure pulsations due to the collapse of the cavities in the hydrofoil wake region. The results show that the examined control technique is quite effective and capable of hindering the formation of cloud cavities and reducing the amplitude of pressure pulsations associated with unsteady cavitation dynamics. This study provides important experimental information, which can be useful for improving industrial technologies and for promoting new developments in this particular research field.
doi_str_mv 10.1063/5.0006560
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000537169900002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405370722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b8cfcdceca91a039f84235be25c2318a13dfd1838dd42681a01163e0b2cb436e3</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOI4u_AcBVyod82jTdCnFFwy40XVJk3TM0EnGJFX6783YQVyJq3u4fOfk5gBwjtECI0ZvigVCiBUMHYAZRrzKSsbY4U6XKGOM4mNwEsI6QbQibAZWtbPRux66Dg42RC3UCLfCRyN6KMWHiSIaZ6GwCsreDer30li4Ed5YDbVdpaGTXn2jb6PyYuiNhGFMoZtwCo460Qd9tp9z8Hp_91I_Zsvnh6f6dplJUpGYtVx2UkktRYVFOrHjOaFFq0khCcVcYKo6hTnlSuWE8cRgzKhGLZFtTpmmc3Ax5W69ex90iM3aDd6mJxuSo4KWqCQkUZcTJb0Lweuu2XqTvjI2GDW7Hpui2feY2OuJ_dSt64I02kr9wycqhWJWVUmhXTL_P13vi6zdYGOyXk3W5Jr2f1z1BYRElEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405370722</pqid></control><display><type>article</type><title>Control of unsteady partial cavitation and cloud cavitation in marine engineering and hydraulic systems</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Kadivar, Ebrahim ; Timoshevskiy, Mikhail V. ; Nichik, Mikhail Yu ; el Moctar, Ould ; Schellin, Thomas E. ; Pervunin, Konstantin S.</creator><creatorcontrib>Kadivar, Ebrahim ; Timoshevskiy, Mikhail V. ; Nichik, Mikhail Yu ; el Moctar, Ould ; Schellin, Thomas E. ; Pervunin, Konstantin S.</creatorcontrib><description>Cavitation is a process of liquid evaporation, bubble or vapor sheet formation, and further collapse of vapor structures, which plays a destructive role in many industrial applications. In marine transport and hydraulic machinery, cavitation usually occurs nearby the surface of a ship propeller and rudder, impeller blades in a pump, and distributor vanes and runner blades in a hydroturbine and causes various undesirable effects such as vibrations of frameworks and/or moving parts, material erosion, and noise enhancement. Based on an extensive literature review, this research is aimed at an experimental investigation of a passive approach to control cavitation on a benchmark hydrofoil using a wedge-type vortex generator in different flow regimes with a high Reynolds number. In this study, we employed a high-speed imaging method to explore the spatial patterns and time evolutions of cavitation structures and utilized a hydroacoustic pressure transducer to record and analyze local pressure pulsations due to the collapse of the cavities in the hydrofoil wake region. The results show that the examined control technique is quite effective and capable of hindering the formation of cloud cavities and reducing the amplitude of pressure pulsations associated with unsteady cavitation dynamics. This study provides important experimental information, which can be useful for improving industrial technologies and for promoting new developments in this particular research field.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0006560</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Blades ; Cavitation ; Distributors ; Fluid dynamics ; Fluid flow ; High Reynolds number ; Hydraulic equipment ; Hydraulic machinery ; Hydraulic turbines ; Hydrofoils ; Impellers ; Industrial applications ; Literature reviews ; Marine engineering ; Marine transportation ; Mechanics ; Physical Sciences ; Physics ; Physics, Fluids &amp; Plasmas ; Propellers ; Reynolds number ; Rudders ; Science &amp; Technology ; Technology ; Vanes ; Vortex generators</subject><ispartof>Physics of fluids (1994), 2020-05, Vol.32 (5)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>87</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000537169900002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c292t-b8cfcdceca91a039f84235be25c2318a13dfd1838dd42681a01163e0b2cb436e3</citedby><cites>FETCH-LOGICAL-c292t-b8cfcdceca91a039f84235be25c2318a13dfd1838dd42681a01163e0b2cb436e3</cites><orcidid>0000-0003-4879-1270 ; 0000-0002-8247-3076 ; 0000-0002-8798-2099 ; 0000-0003-4415-9307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Kadivar, Ebrahim</creatorcontrib><creatorcontrib>Timoshevskiy, Mikhail V.</creatorcontrib><creatorcontrib>Nichik, Mikhail Yu</creatorcontrib><creatorcontrib>el Moctar, Ould</creatorcontrib><creatorcontrib>Schellin, Thomas E.</creatorcontrib><creatorcontrib>Pervunin, Konstantin S.</creatorcontrib><title>Control of unsteady partial cavitation and cloud cavitation in marine engineering and hydraulic systems</title><title>Physics of fluids (1994)</title><addtitle>PHYS FLUIDS</addtitle><description>Cavitation is a process of liquid evaporation, bubble or vapor sheet formation, and further collapse of vapor structures, which plays a destructive role in many industrial applications. In marine transport and hydraulic machinery, cavitation usually occurs nearby the surface of a ship propeller and rudder, impeller blades in a pump, and distributor vanes and runner blades in a hydroturbine and causes various undesirable effects such as vibrations of frameworks and/or moving parts, material erosion, and noise enhancement. Based on an extensive literature review, this research is aimed at an experimental investigation of a passive approach to control cavitation on a benchmark hydrofoil using a wedge-type vortex generator in different flow regimes with a high Reynolds number. In this study, we employed a high-speed imaging method to explore the spatial patterns and time evolutions of cavitation structures and utilized a hydroacoustic pressure transducer to record and analyze local pressure pulsations due to the collapse of the cavities in the hydrofoil wake region. The results show that the examined control technique is quite effective and capable of hindering the formation of cloud cavities and reducing the amplitude of pressure pulsations associated with unsteady cavitation dynamics. This study provides important experimental information, which can be useful for improving industrial technologies and for promoting new developments in this particular research field.</description><subject>Blades</subject><subject>Cavitation</subject><subject>Distributors</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>High Reynolds number</subject><subject>Hydraulic equipment</subject><subject>Hydraulic machinery</subject><subject>Hydraulic turbines</subject><subject>Hydrofoils</subject><subject>Impellers</subject><subject>Industrial applications</subject><subject>Literature reviews</subject><subject>Marine engineering</subject><subject>Marine transportation</subject><subject>Mechanics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Fluids &amp; Plasmas</subject><subject>Propellers</subject><subject>Reynolds number</subject><subject>Rudders</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Vanes</subject><subject>Vortex generators</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkEtLxDAUhYMoOI4u_AcBVyod82jTdCnFFwy40XVJk3TM0EnGJFX6783YQVyJq3u4fOfk5gBwjtECI0ZvigVCiBUMHYAZRrzKSsbY4U6XKGOM4mNwEsI6QbQibAZWtbPRux66Dg42RC3UCLfCRyN6KMWHiSIaZ6GwCsreDer30li4Ed5YDbVdpaGTXn2jb6PyYuiNhGFMoZtwCo460Qd9tp9z8Hp_91I_Zsvnh6f6dplJUpGYtVx2UkktRYVFOrHjOaFFq0khCcVcYKo6hTnlSuWE8cRgzKhGLZFtTpmmc3Ax5W69ex90iM3aDd6mJxuSo4KWqCQkUZcTJb0Lweuu2XqTvjI2GDW7Hpui2feY2OuJ_dSt64I02kr9wycqhWJWVUmhXTL_P13vi6zdYGOyXk3W5Jr2f1z1BYRElEU</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Kadivar, Ebrahim</creator><creator>Timoshevskiy, Mikhail V.</creator><creator>Nichik, Mikhail Yu</creator><creator>el Moctar, Ould</creator><creator>Schellin, Thomas E.</creator><creator>Pervunin, Konstantin S.</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4879-1270</orcidid><orcidid>https://orcid.org/0000-0002-8247-3076</orcidid><orcidid>https://orcid.org/0000-0002-8798-2099</orcidid><orcidid>https://orcid.org/0000-0003-4415-9307</orcidid></search><sort><creationdate>20200501</creationdate><title>Control of unsteady partial cavitation and cloud cavitation in marine engineering and hydraulic systems</title><author>Kadivar, Ebrahim ; Timoshevskiy, Mikhail V. ; Nichik, Mikhail Yu ; el Moctar, Ould ; Schellin, Thomas E. ; Pervunin, Konstantin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b8cfcdceca91a039f84235be25c2318a13dfd1838dd42681a01163e0b2cb436e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blades</topic><topic>Cavitation</topic><topic>Distributors</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>High Reynolds number</topic><topic>Hydraulic equipment</topic><topic>Hydraulic machinery</topic><topic>Hydraulic turbines</topic><topic>Hydrofoils</topic><topic>Impellers</topic><topic>Industrial applications</topic><topic>Literature reviews</topic><topic>Marine engineering</topic><topic>Marine transportation</topic><topic>Mechanics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Fluids &amp; Plasmas</topic><topic>Propellers</topic><topic>Reynolds number</topic><topic>Rudders</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Vanes</topic><topic>Vortex generators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadivar, Ebrahim</creatorcontrib><creatorcontrib>Timoshevskiy, Mikhail V.</creatorcontrib><creatorcontrib>Nichik, Mikhail Yu</creatorcontrib><creatorcontrib>el Moctar, Ould</creatorcontrib><creatorcontrib>Schellin, Thomas E.</creatorcontrib><creatorcontrib>Pervunin, Konstantin S.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadivar, Ebrahim</au><au>Timoshevskiy, Mikhail V.</au><au>Nichik, Mikhail Yu</au><au>el Moctar, Ould</au><au>Schellin, Thomas E.</au><au>Pervunin, Konstantin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of unsteady partial cavitation and cloud cavitation in marine engineering and hydraulic systems</atitle><jtitle>Physics of fluids (1994)</jtitle><stitle>PHYS FLUIDS</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>32</volume><issue>5</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Cavitation is a process of liquid evaporation, bubble or vapor sheet formation, and further collapse of vapor structures, which plays a destructive role in many industrial applications. In marine transport and hydraulic machinery, cavitation usually occurs nearby the surface of a ship propeller and rudder, impeller blades in a pump, and distributor vanes and runner blades in a hydroturbine and causes various undesirable effects such as vibrations of frameworks and/or moving parts, material erosion, and noise enhancement. Based on an extensive literature review, this research is aimed at an experimental investigation of a passive approach to control cavitation on a benchmark hydrofoil using a wedge-type vortex generator in different flow regimes with a high Reynolds number. In this study, we employed a high-speed imaging method to explore the spatial patterns and time evolutions of cavitation structures and utilized a hydroacoustic pressure transducer to record and analyze local pressure pulsations due to the collapse of the cavities in the hydrofoil wake region. The results show that the examined control technique is quite effective and capable of hindering the formation of cloud cavities and reducing the amplitude of pressure pulsations associated with unsteady cavitation dynamics. This study provides important experimental information, which can be useful for improving industrial technologies and for promoting new developments in this particular research field.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><doi>10.1063/5.0006560</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4879-1270</orcidid><orcidid>https://orcid.org/0000-0002-8247-3076</orcidid><orcidid>https://orcid.org/0000-0002-8798-2099</orcidid><orcidid>https://orcid.org/0000-0003-4415-9307</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2020-05, Vol.32 (5)
issn 1070-6631
1089-7666
language eng
recordid cdi_webofscience_primary_000537169900002
source AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Blades
Cavitation
Distributors
Fluid dynamics
Fluid flow
High Reynolds number
Hydraulic equipment
Hydraulic machinery
Hydraulic turbines
Hydrofoils
Impellers
Industrial applications
Literature reviews
Marine engineering
Marine transportation
Mechanics
Physical Sciences
Physics
Physics, Fluids & Plasmas
Propellers
Reynolds number
Rudders
Science & Technology
Technology
Vanes
Vortex generators
title Control of unsteady partial cavitation and cloud cavitation in marine engineering and hydraulic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A01%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20unsteady%20partial%20cavitation%20and%20cloud%20cavitation%20in%20marine%20engineering%20and%20hydraulic%20systems&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Kadivar,%20Ebrahim&rft.date=2020-05-01&rft.volume=32&rft.issue=5&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0006560&rft_dat=%3Cproquest_webof%3E2405370722%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405370722&rft_id=info:pmid/&rfr_iscdi=true