Combined Replenishment of miR‐34a and let‐7b by Targeted Nanoparticles Inhibits Tumor Growth in Neuroblastoma Preclinical Models

Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high‐risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-05, Vol.16 (20), p.e1906426-n/a, Article 1906426
Hauptverfasser: Di Paolo, Daniela, Pastorino, Fabio, Brignole, Chiara, Corrias, Maria Valeria, Emionite, Laura, Cilli, Michele, Tamma, Roberto, Priddy, Leslie, Amaro, Adriana, Ferrari, Davide, Marotta, Roberto, Ferretti, Elisa, Pfeffer, Ulrich, Ribatti, Domenico, Sementa, Angela Rita, Brown, David, Ikegaki, Naohiko, Shimada, Hiroyuki, Ponzoni, Mirco, Perri, Patrizia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page e1906426
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Di Paolo, Daniela
Pastorino, Fabio
Brignole, Chiara
Corrias, Maria Valeria
Emionite, Laura
Cilli, Michele
Tamma, Roberto
Priddy, Leslie
Amaro, Adriana
Ferrari, Davide
Marotta, Roberto
Ferretti, Elisa
Pfeffer, Ulrich
Ribatti, Domenico
Sementa, Angela Rita
Brown, David
Ikegaki, Naohiko
Shimada, Hiroyuki
Ponzoni, Mirco
Perri, Patrizia
description Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high‐risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the diminished levels of miR‐34a and let‐7b are oncogenic in NB. Due to the ability of miRNA‐mimics to recover the tumor suppression functions of miRNAs underexpressed into cancer cells, safe and efficient nanocarriers selectively targeted to NB cells and tested in clinically relevant mouse models are developed. The technology exploits the nucleic acids negative charges to build coated‐cationic liposomes, then functionalized with antibodies against GD2 receptor. The replenishment of miR‐34a and let‐7b by NB‐targeted nanoparticles, individually and more powerfully in combination, significantly reduces cell division, proliferation, neoangiogenesis, tumor growth and burden, and induces apoptosis in orthotopic xenografts and improves mice survival in pseudometastatic models. These functional effects highlight a cooperative down‐modulation of MYCN and its down‐stream targets, ALK and LIN28B, exerted by miR‐34a and let‐7b that reactivate regulatory networks leading to a favorable therapeutic response. These findings demonstrate a promising therapeutic efficacy of miR‐34a and let‐7b combined replacement and support its clinical application as adjuvant therapy for high‐risk NB patients. Targeted nanocarriers entrapping microRNAs (miRNA)‐mimics are selectively delivered to neuroblastoma cells. The technology exploits the nucleic acids negative charges to build coated cationic liposomes, which are functionalized with antibodies against GD2 receptor. The combined replenishment of miR‐34a and let‐7b by neuroblastoma‐targeted nanoparticles exerts a cooperative down‐modulation of key oncogenes. The reactivated regulatory networks lead to a favorable therapeutic response in preclinical models.
doi_str_mv 10.1002/smll.201906426
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000537163200020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394261079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-7a8583e06ea045fa117856ece75a91070dcd526855dd0c2ae07da8ccaa45e4b93</originalsourceid><addsrcrecordid>eNqNkc-KFDEQxhtR3D969SgBL8IyYyWdpLuP0qzrwuwq63hu0ukaJ0s6GZM0y9w8-AA-o09ihhlH8KLkkCr4fR9V9RXFCwpzCsDexNHaOQPagORMPipOqaTlTNaseXysKZwUZzHeA5SU8eppcVKy_HgtT4vvrR9743Agd7ix6Excj-gS8Ssymruf336UXBHlBmIx5a7qSb8lSxW-YMqaW-X8RoVktMVIrt3a9CZFspxGH8hV8A9pTYwjtzgF31sVkx8V-RhQW-OMVpbc-AFtfFY8WSkb8fnhPy8-v7tctu9niw9X1-3bxUxzCnJWqVrUJYJEBVysFKVVLSRqrIRqKFQw6EEwWQsxDKCZQqgGVWutFBfI-6Y8L17vfTfBf50wpm40UaO1yqGfYsfKJh8xO-3QV3-h934KLk_XMQ6CV7VsaKbme0oHH2PAVbcJZlRh21Hodvl0u3y6Yz5Z8PJgO_UjDkf8dyAZuNgDD9j7VdQGncYjBgCirKgsWa4YZLr-f7o1SSXjXesnl7K0OUiNxe0_5u4-3SwWf7b4BQVUv-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405478691</pqid></control><display><type>article</type><title>Combined Replenishment of miR‐34a and let‐7b by Targeted Nanoparticles Inhibits Tumor Growth in Neuroblastoma Preclinical Models</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Di Paolo, Daniela ; Pastorino, Fabio ; Brignole, Chiara ; Corrias, Maria Valeria ; Emionite, Laura ; Cilli, Michele ; Tamma, Roberto ; Priddy, Leslie ; Amaro, Adriana ; Ferrari, Davide ; Marotta, Roberto ; Ferretti, Elisa ; Pfeffer, Ulrich ; Ribatti, Domenico ; Sementa, Angela Rita ; Brown, David ; Ikegaki, Naohiko ; Shimada, Hiroyuki ; Ponzoni, Mirco ; Perri, Patrizia</creator><creatorcontrib>Di Paolo, Daniela ; Pastorino, Fabio ; Brignole, Chiara ; Corrias, Maria Valeria ; Emionite, Laura ; Cilli, Michele ; Tamma, Roberto ; Priddy, Leslie ; Amaro, Adriana ; Ferrari, Davide ; Marotta, Roberto ; Ferretti, Elisa ; Pfeffer, Ulrich ; Ribatti, Domenico ; Sementa, Angela Rita ; Brown, David ; Ikegaki, Naohiko ; Shimada, Hiroyuki ; Ponzoni, Mirco ; Perri, Patrizia</creatorcontrib><description>Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high‐risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the diminished levels of miR‐34a and let‐7b are oncogenic in NB. Due to the ability of miRNA‐mimics to recover the tumor suppression functions of miRNAs underexpressed into cancer cells, safe and efficient nanocarriers selectively targeted to NB cells and tested in clinically relevant mouse models are developed. The technology exploits the nucleic acids negative charges to build coated‐cationic liposomes, then functionalized with antibodies against GD2 receptor. The replenishment of miR‐34a and let‐7b by NB‐targeted nanoparticles, individually and more powerfully in combination, significantly reduces cell division, proliferation, neoangiogenesis, tumor growth and burden, and induces apoptosis in orthotopic xenografts and improves mice survival in pseudometastatic models. These functional effects highlight a cooperative down‐modulation of MYCN and its down‐stream targets, ALK and LIN28B, exerted by miR‐34a and let‐7b that reactivate regulatory networks leading to a favorable therapeutic response. These findings demonstrate a promising therapeutic efficacy of miR‐34a and let‐7b combined replacement and support its clinical application as adjuvant therapy for high‐risk NB patients. Targeted nanocarriers entrapping microRNAs (miRNA)‐mimics are selectively delivered to neuroblastoma cells. The technology exploits the nucleic acids negative charges to build coated cationic liposomes, which are functionalized with antibodies against GD2 receptor. The combined replenishment of miR‐34a and let‐7b by neuroblastoma‐targeted nanoparticles exerts a cooperative down‐modulation of key oncogenes. The reactivated regulatory networks lead to a favorable therapeutic response in preclinical models.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201906426</identifier><identifier>PMID: 32323486</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Antibodies ; Apoptosis ; Cancer ; Cell division ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; let‐7b ; Liposomes ; Materials Science ; Materials Science, Multidisciplinary ; miRNA mimics delivery ; miR‐34a ; Nanoparticles ; Nanoscience &amp; Nanotechnology ; Nanotechnology ; Neuroblastoma ; Nucleic acids ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Replenishment ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; targeted nanoparticles ; Technology ; Tumors ; Xenotransplantation</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-05, Vol.16 (20), p.e1906426-n/a, Article 1906426</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000537163200020</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4106-7a8583e06ea045fa117856ece75a91070dcd526855dd0c2ae07da8ccaa45e4b93</citedby><cites>FETCH-LOGICAL-c4106-7a8583e06ea045fa117856ece75a91070dcd526855dd0c2ae07da8ccaa45e4b93</cites><orcidid>0000-0003-2538-8278 ; 0000-0002-2563-6991 ; 0000-0003-4083-8986 ; 0000-0003-0634-5483 ; 0000-0002-6164-4286 ; 0000-0002-1573-7756 ; 0000-0002-7316-0772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201906426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201906426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,28255,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32323486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Paolo, Daniela</creatorcontrib><creatorcontrib>Pastorino, Fabio</creatorcontrib><creatorcontrib>Brignole, Chiara</creatorcontrib><creatorcontrib>Corrias, Maria Valeria</creatorcontrib><creatorcontrib>Emionite, Laura</creatorcontrib><creatorcontrib>Cilli, Michele</creatorcontrib><creatorcontrib>Tamma, Roberto</creatorcontrib><creatorcontrib>Priddy, Leslie</creatorcontrib><creatorcontrib>Amaro, Adriana</creatorcontrib><creatorcontrib>Ferrari, Davide</creatorcontrib><creatorcontrib>Marotta, Roberto</creatorcontrib><creatorcontrib>Ferretti, Elisa</creatorcontrib><creatorcontrib>Pfeffer, Ulrich</creatorcontrib><creatorcontrib>Ribatti, Domenico</creatorcontrib><creatorcontrib>Sementa, Angela Rita</creatorcontrib><creatorcontrib>Brown, David</creatorcontrib><creatorcontrib>Ikegaki, Naohiko</creatorcontrib><creatorcontrib>Shimada, Hiroyuki</creatorcontrib><creatorcontrib>Ponzoni, Mirco</creatorcontrib><creatorcontrib>Perri, Patrizia</creatorcontrib><title>Combined Replenishment of miR‐34a and let‐7b by Targeted Nanoparticles Inhibits Tumor Growth in Neuroblastoma Preclinical Models</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>SMALL</addtitle><addtitle>Small</addtitle><description>Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high‐risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the diminished levels of miR‐34a and let‐7b are oncogenic in NB. Due to the ability of miRNA‐mimics to recover the tumor suppression functions of miRNAs underexpressed into cancer cells, safe and efficient nanocarriers selectively targeted to NB cells and tested in clinically relevant mouse models are developed. The technology exploits the nucleic acids negative charges to build coated‐cationic liposomes, then functionalized with antibodies against GD2 receptor. The replenishment of miR‐34a and let‐7b by NB‐targeted nanoparticles, individually and more powerfully in combination, significantly reduces cell division, proliferation, neoangiogenesis, tumor growth and burden, and induces apoptosis in orthotopic xenografts and improves mice survival in pseudometastatic models. These functional effects highlight a cooperative down‐modulation of MYCN and its down‐stream targets, ALK and LIN28B, exerted by miR‐34a and let‐7b that reactivate regulatory networks leading to a favorable therapeutic response. These findings demonstrate a promising therapeutic efficacy of miR‐34a and let‐7b combined replacement and support its clinical application as adjuvant therapy for high‐risk NB patients. Targeted nanocarriers entrapping microRNAs (miRNA)‐mimics are selectively delivered to neuroblastoma cells. The technology exploits the nucleic acids negative charges to build coated cationic liposomes, which are functionalized with antibodies against GD2 receptor. The combined replenishment of miR‐34a and let‐7b by neuroblastoma‐targeted nanoparticles exerts a cooperative down‐modulation of key oncogenes. The reactivated regulatory networks lead to a favorable therapeutic response in preclinical models.</description><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Cell division</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>let‐7b</subject><subject>Liposomes</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>miRNA mimics delivery</subject><subject>miR‐34a</subject><subject>Nanoparticles</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanotechnology</subject><subject>Neuroblastoma</subject><subject>Nucleic acids</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Replenishment</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>targeted nanoparticles</subject><subject>Technology</subject><subject>Tumors</subject><subject>Xenotransplantation</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc-KFDEQxhtR3D969SgBL8IyYyWdpLuP0qzrwuwq63hu0ukaJ0s6GZM0y9w8-AA-o09ihhlH8KLkkCr4fR9V9RXFCwpzCsDexNHaOQPagORMPipOqaTlTNaseXysKZwUZzHeA5SU8eppcVKy_HgtT4vvrR9743Agd7ix6Excj-gS8Ssymruf336UXBHlBmIx5a7qSb8lSxW-YMqaW-X8RoVktMVIrt3a9CZFspxGH8hV8A9pTYwjtzgF31sVkx8V-RhQW-OMVpbc-AFtfFY8WSkb8fnhPy8-v7tctu9niw9X1-3bxUxzCnJWqVrUJYJEBVysFKVVLSRqrIRqKFQw6EEwWQsxDKCZQqgGVWutFBfI-6Y8L17vfTfBf50wpm40UaO1yqGfYsfKJh8xO-3QV3-h934KLk_XMQ6CV7VsaKbme0oHH2PAVbcJZlRh21Hodvl0u3y6Yz5Z8PJgO_UjDkf8dyAZuNgDD9j7VdQGncYjBgCirKgsWa4YZLr-f7o1SSXjXesnl7K0OUiNxe0_5u4-3SwWf7b4BQVUv-M</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Di Paolo, Daniela</creator><creator>Pastorino, Fabio</creator><creator>Brignole, Chiara</creator><creator>Corrias, Maria Valeria</creator><creator>Emionite, Laura</creator><creator>Cilli, Michele</creator><creator>Tamma, Roberto</creator><creator>Priddy, Leslie</creator><creator>Amaro, Adriana</creator><creator>Ferrari, Davide</creator><creator>Marotta, Roberto</creator><creator>Ferretti, Elisa</creator><creator>Pfeffer, Ulrich</creator><creator>Ribatti, Domenico</creator><creator>Sementa, Angela Rita</creator><creator>Brown, David</creator><creator>Ikegaki, Naohiko</creator><creator>Shimada, Hiroyuki</creator><creator>Ponzoni, Mirco</creator><creator>Perri, Patrizia</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2538-8278</orcidid><orcidid>https://orcid.org/0000-0002-2563-6991</orcidid><orcidid>https://orcid.org/0000-0003-4083-8986</orcidid><orcidid>https://orcid.org/0000-0003-0634-5483</orcidid><orcidid>https://orcid.org/0000-0002-6164-4286</orcidid><orcidid>https://orcid.org/0000-0002-1573-7756</orcidid><orcidid>https://orcid.org/0000-0002-7316-0772</orcidid></search><sort><creationdate>20200501</creationdate><title>Combined Replenishment of miR‐34a and let‐7b by Targeted Nanoparticles Inhibits Tumor Growth in Neuroblastoma Preclinical Models</title><author>Di Paolo, Daniela ; Pastorino, Fabio ; Brignole, Chiara ; Corrias, Maria Valeria ; Emionite, Laura ; Cilli, Michele ; Tamma, Roberto ; Priddy, Leslie ; Amaro, Adriana ; Ferrari, Davide ; Marotta, Roberto ; Ferretti, Elisa ; Pfeffer, Ulrich ; Ribatti, Domenico ; Sementa, Angela Rita ; Brown, David ; Ikegaki, Naohiko ; Shimada, Hiroyuki ; Ponzoni, Mirco ; Perri, Patrizia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-7a8583e06ea045fa117856ece75a91070dcd526855dd0c2ae07da8ccaa45e4b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Cell division</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>let‐7b</topic><topic>Liposomes</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>miRNA mimics delivery</topic><topic>miR‐34a</topic><topic>Nanoparticles</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanotechnology</topic><topic>Neuroblastoma</topic><topic>Nucleic acids</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Replenishment</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>targeted nanoparticles</topic><topic>Technology</topic><topic>Tumors</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Paolo, Daniela</creatorcontrib><creatorcontrib>Pastorino, Fabio</creatorcontrib><creatorcontrib>Brignole, Chiara</creatorcontrib><creatorcontrib>Corrias, Maria Valeria</creatorcontrib><creatorcontrib>Emionite, Laura</creatorcontrib><creatorcontrib>Cilli, Michele</creatorcontrib><creatorcontrib>Tamma, Roberto</creatorcontrib><creatorcontrib>Priddy, Leslie</creatorcontrib><creatorcontrib>Amaro, Adriana</creatorcontrib><creatorcontrib>Ferrari, Davide</creatorcontrib><creatorcontrib>Marotta, Roberto</creatorcontrib><creatorcontrib>Ferretti, Elisa</creatorcontrib><creatorcontrib>Pfeffer, Ulrich</creatorcontrib><creatorcontrib>Ribatti, Domenico</creatorcontrib><creatorcontrib>Sementa, Angela Rita</creatorcontrib><creatorcontrib>Brown, David</creatorcontrib><creatorcontrib>Ikegaki, Naohiko</creatorcontrib><creatorcontrib>Shimada, Hiroyuki</creatorcontrib><creatorcontrib>Ponzoni, Mirco</creatorcontrib><creatorcontrib>Perri, Patrizia</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Paolo, Daniela</au><au>Pastorino, Fabio</au><au>Brignole, Chiara</au><au>Corrias, Maria Valeria</au><au>Emionite, Laura</au><au>Cilli, Michele</au><au>Tamma, Roberto</au><au>Priddy, Leslie</au><au>Amaro, Adriana</au><au>Ferrari, Davide</au><au>Marotta, Roberto</au><au>Ferretti, Elisa</au><au>Pfeffer, Ulrich</au><au>Ribatti, Domenico</au><au>Sementa, Angela Rita</au><au>Brown, David</au><au>Ikegaki, Naohiko</au><au>Shimada, Hiroyuki</au><au>Ponzoni, Mirco</au><au>Perri, Patrizia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Replenishment of miR‐34a and let‐7b by Targeted Nanoparticles Inhibits Tumor Growth in Neuroblastoma Preclinical Models</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><stitle>SMALL</stitle><addtitle>Small</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>20</issue><spage>e1906426</spage><epage>n/a</epage><pages>e1906426-n/a</pages><artnum>1906426</artnum><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high‐risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the diminished levels of miR‐34a and let‐7b are oncogenic in NB. Due to the ability of miRNA‐mimics to recover the tumor suppression functions of miRNAs underexpressed into cancer cells, safe and efficient nanocarriers selectively targeted to NB cells and tested in clinically relevant mouse models are developed. The technology exploits the nucleic acids negative charges to build coated‐cationic liposomes, then functionalized with antibodies against GD2 receptor. The replenishment of miR‐34a and let‐7b by NB‐targeted nanoparticles, individually and more powerfully in combination, significantly reduces cell division, proliferation, neoangiogenesis, tumor growth and burden, and induces apoptosis in orthotopic xenografts and improves mice survival in pseudometastatic models. These functional effects highlight a cooperative down‐modulation of MYCN and its down‐stream targets, ALK and LIN28B, exerted by miR‐34a and let‐7b that reactivate regulatory networks leading to a favorable therapeutic response. These findings demonstrate a promising therapeutic efficacy of miR‐34a and let‐7b combined replacement and support its clinical application as adjuvant therapy for high‐risk NB patients. Targeted nanocarriers entrapping microRNAs (miRNA)‐mimics are selectively delivered to neuroblastoma cells. The technology exploits the nucleic acids negative charges to build coated cationic liposomes, which are functionalized with antibodies against GD2 receptor. The combined replenishment of miR‐34a and let‐7b by neuroblastoma‐targeted nanoparticles exerts a cooperative down‐modulation of key oncogenes. The reactivated regulatory networks lead to a favorable therapeutic response in preclinical models.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>32323486</pmid><doi>10.1002/smll.201906426</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2538-8278</orcidid><orcidid>https://orcid.org/0000-0002-2563-6991</orcidid><orcidid>https://orcid.org/0000-0003-4083-8986</orcidid><orcidid>https://orcid.org/0000-0003-0634-5483</orcidid><orcidid>https://orcid.org/0000-0002-6164-4286</orcidid><orcidid>https://orcid.org/0000-0002-1573-7756</orcidid><orcidid>https://orcid.org/0000-0002-7316-0772</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-05, Vol.16 (20), p.e1906426-n/a, Article 1906426
issn 1613-6810
1613-6829
language eng
recordid cdi_webofscience_primary_000537163200020
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Antibodies
Apoptosis
Cancer
Cell division
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
let‐7b
Liposomes
Materials Science
Materials Science, Multidisciplinary
miRNA mimics delivery
miR‐34a
Nanoparticles
Nanoscience & Nanotechnology
Nanotechnology
Neuroblastoma
Nucleic acids
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Replenishment
Science & Technology
Science & Technology - Other Topics
targeted nanoparticles
Technology
Tumors
Xenotransplantation
title Combined Replenishment of miR‐34a and let‐7b by Targeted Nanoparticles Inhibits Tumor Growth in Neuroblastoma Preclinical Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T11%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Replenishment%20of%20miR%E2%80%9034a%20and%20let%E2%80%907b%20by%20Targeted%20Nanoparticles%20Inhibits%20Tumor%20Growth%20in%20Neuroblastoma%20Preclinical%20Models&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Di%20Paolo,%20Daniela&rft.date=2020-05-01&rft.volume=16&rft.issue=20&rft.spage=e1906426&rft.epage=n/a&rft.pages=e1906426-n/a&rft.artnum=1906426&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201906426&rft_dat=%3Cproquest_webof%3E2394261079%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405478691&rft_id=info:pmid/32323486&rfr_iscdi=true