Tight coefficients of averaged operators via scaled relative graph

Many iterative methods in optimization are fixed-point iterations with averaged operators. As such methods converge at an O(1/k) rate with the constant determined by the averagedness coefficient, establishing small averagedness coefficients for operators is of broad interest. In this paper, we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2020-10, Vol.490 (1), p.124211, Article 124211
Hauptverfasser: Huang, Xinmeng, Ryu, Ernest K., Yin, Wotao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 124211
container_title Journal of mathematical analysis and applications
container_volume 490
creator Huang, Xinmeng
Ryu, Ernest K.
Yin, Wotao
description Many iterative methods in optimization are fixed-point iterations with averaged operators. As such methods converge at an O(1/k) rate with the constant determined by the averagedness coefficient, establishing small averagedness coefficients for operators is of broad interest. In this paper, we show that the averagedness coefficients of the composition of averaged operators by Ogura and Yamada (2002) [21] and the three-operator splitting by Davis and Yin (2017) [9] are tight. The analysis relies on the scaled relative graph, a geometric tool recently proposed by Ryu et al. (2019) [25].
doi_str_mv 10.1016/j.jmaa.2020.124211
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000535982700016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X20303735</els_id><sourcerecordid>S0022247X20303735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-bb1447d2c139ea16a9aa092c77b55a4a10a8271504dceecf71d445d27cd38e7f3</originalsourceid><addsrcrecordid>eNqNkEtLAzEQgIMoWKt_wNPeZWsmm910wYsuvqDgpYK3MM3OtiltU5K44r83S4tH8TTDMN88PsaugU-AQ3W7nqy3iBPBRSoIKQBO2Ah4XeV8CsUpG3EuRC6k-jhnFyGsOQcoFYzYw9wuVzEzjrrOGku7GDLXZdiTxyW1mdunJDofst5iFgxuUtHTBqPtKVt63K8u2VmHm0BXxzhm70-P8-Yln709vzb3s9wUUsZ8sQApVSsMFDUhVFgj8loYpRZliRKB41QoKLlsDZHpFLRSlq1Qpi2mpLpizMRhrvEuBE-d3nu7Rf-tgevBgl7rwYIeLOiDhQTdHKAvWrguDB8a-gU552VR1mlvyqBK3dP_dzc2Jgtu17jPXUzo3QGlpKC35PURb60nE3Xr7F93_gDz_IbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tight coefficients of averaged operators via scaled relative graph</title><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Huang, Xinmeng ; Ryu, Ernest K. ; Yin, Wotao</creator><creatorcontrib>Huang, Xinmeng ; Ryu, Ernest K. ; Yin, Wotao</creatorcontrib><description>Many iterative methods in optimization are fixed-point iterations with averaged operators. As such methods converge at an O(1/k) rate with the constant determined by the averagedness coefficient, establishing small averagedness coefficients for operators is of broad interest. In this paper, we show that the averagedness coefficients of the composition of averaged operators by Ogura and Yamada (2002) [21] and the three-operator splitting by Davis and Yin (2017) [9] are tight. The analysis relies on the scaled relative graph, a geometric tool recently proposed by Ryu et al. (2019) [25].</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2020.124211</identifier><language>eng</language><publisher>SAN DIEGO: Elsevier Inc</publisher><subject>Averaged operator ; Composition of operators ; Euclidean geometry ; Mathematics ; Mathematics, Applied ; Nonexpansive operator ; Physical Sciences ; Science &amp; Technology ; Three operators</subject><ispartof>Journal of mathematical analysis and applications, 2020-10, Vol.490 (1), p.124211, Article 124211</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000535982700016</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c344t-bb1447d2c139ea16a9aa092c77b55a4a10a8271504dceecf71d445d27cd38e7f3</citedby><cites>FETCH-LOGICAL-c344t-bb1447d2c139ea16a9aa092c77b55a4a10a8271504dceecf71d445d27cd38e7f3</cites><orcidid>0000-0001-6820-9095 ; 0000-0001-6697-9731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmaa.2020.124211$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Huang, Xinmeng</creatorcontrib><creatorcontrib>Ryu, Ernest K.</creatorcontrib><creatorcontrib>Yin, Wotao</creatorcontrib><title>Tight coefficients of averaged operators via scaled relative graph</title><title>Journal of mathematical analysis and applications</title><addtitle>J MATH ANAL APPL</addtitle><description>Many iterative methods in optimization are fixed-point iterations with averaged operators. As such methods converge at an O(1/k) rate with the constant determined by the averagedness coefficient, establishing small averagedness coefficients for operators is of broad interest. In this paper, we show that the averagedness coefficients of the composition of averaged operators by Ogura and Yamada (2002) [21] and the three-operator splitting by Davis and Yin (2017) [9] are tight. The analysis relies on the scaled relative graph, a geometric tool recently proposed by Ryu et al. (2019) [25].</description><subject>Averaged operator</subject><subject>Composition of operators</subject><subject>Euclidean geometry</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Nonexpansive operator</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Three operators</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkEtLAzEQgIMoWKt_wNPeZWsmm910wYsuvqDgpYK3MM3OtiltU5K44r83S4tH8TTDMN88PsaugU-AQ3W7nqy3iBPBRSoIKQBO2Ah4XeV8CsUpG3EuRC6k-jhnFyGsOQcoFYzYw9wuVzEzjrrOGku7GDLXZdiTxyW1mdunJDofst5iFgxuUtHTBqPtKVt63K8u2VmHm0BXxzhm70-P8-Yln709vzb3s9wUUsZ8sQApVSsMFDUhVFgj8loYpRZliRKB41QoKLlsDZHpFLRSlq1Qpi2mpLpizMRhrvEuBE-d3nu7Rf-tgevBgl7rwYIeLOiDhQTdHKAvWrguDB8a-gU552VR1mlvyqBK3dP_dzc2Jgtu17jPXUzo3QGlpKC35PURb60nE3Xr7F93_gDz_IbQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Huang, Xinmeng</creator><creator>Ryu, Ernest K.</creator><creator>Yin, Wotao</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6820-9095</orcidid><orcidid>https://orcid.org/0000-0001-6697-9731</orcidid></search><sort><creationdate>20201001</creationdate><title>Tight coefficients of averaged operators via scaled relative graph</title><author>Huang, Xinmeng ; Ryu, Ernest K. ; Yin, Wotao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-bb1447d2c139ea16a9aa092c77b55a4a10a8271504dceecf71d445d27cd38e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Averaged operator</topic><topic>Composition of operators</topic><topic>Euclidean geometry</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Nonexpansive operator</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Three operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xinmeng</creatorcontrib><creatorcontrib>Ryu, Ernest K.</creatorcontrib><creatorcontrib>Yin, Wotao</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xinmeng</au><au>Ryu, Ernest K.</au><au>Yin, Wotao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight coefficients of averaged operators via scaled relative graph</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><stitle>J MATH ANAL APPL</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>490</volume><issue>1</issue><spage>124211</spage><pages>124211-</pages><artnum>124211</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>Many iterative methods in optimization are fixed-point iterations with averaged operators. As such methods converge at an O(1/k) rate with the constant determined by the averagedness coefficient, establishing small averagedness coefficients for operators is of broad interest. In this paper, we show that the averagedness coefficients of the composition of averaged operators by Ogura and Yamada (2002) [21] and the three-operator splitting by Davis and Yin (2017) [9] are tight. The analysis relies on the scaled relative graph, a geometric tool recently proposed by Ryu et al. (2019) [25].</abstract><cop>SAN DIEGO</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2020.124211</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6820-9095</orcidid><orcidid>https://orcid.org/0000-0001-6697-9731</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2020-10, Vol.490 (1), p.124211, Article 124211
issn 0022-247X
1096-0813
language eng
recordid cdi_webofscience_primary_000535982700016
source Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals
subjects Averaged operator
Composition of operators
Euclidean geometry
Mathematics
Mathematics, Applied
Nonexpansive operator
Physical Sciences
Science & Technology
Three operators
title Tight coefficients of averaged operators via scaled relative graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20coefficients%20of%20averaged%20operators%20via%20scaled%20relative%20graph&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Huang,%20Xinmeng&rft.date=2020-10-01&rft.volume=490&rft.issue=1&rft.spage=124211&rft.pages=124211-&rft.artnum=124211&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2020.124211&rft_dat=%3Celsevier_webof%3ES0022247X20303735%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X20303735&rfr_iscdi=true