Tight coefficients of averaged operators via scaled relative graph
Many iterative methods in optimization are fixed-point iterations with averaged operators. As such methods converge at an O(1/k) rate with the constant determined by the averagedness coefficient, establishing small averagedness coefficients for operators is of broad interest. In this paper, we show...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2020-10, Vol.490 (1), p.124211, Article 124211 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 124211 |
container_title | Journal of mathematical analysis and applications |
container_volume | 490 |
creator | Huang, Xinmeng Ryu, Ernest K. Yin, Wotao |
description | Many iterative methods in optimization are fixed-point iterations with averaged operators. As such methods converge at an O(1/k) rate with the constant determined by the averagedness coefficient, establishing small averagedness coefficients for operators is of broad interest. In this paper, we show that the averagedness coefficients of the composition of averaged operators by Ogura and Yamada (2002) [21] and the three-operator splitting by Davis and Yin (2017) [9] are tight. The analysis relies on the scaled relative graph, a geometric tool recently proposed by Ryu et al. (2019) [25]. |
doi_str_mv | 10.1016/j.jmaa.2020.124211 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000535982700016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X20303735</els_id><sourcerecordid>S0022247X20303735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-bb1447d2c139ea16a9aa092c77b55a4a10a8271504dceecf71d445d27cd38e7f3</originalsourceid><addsrcrecordid>eNqNkEtLAzEQgIMoWKt_wNPeZWsmm910wYsuvqDgpYK3MM3OtiltU5K44r83S4tH8TTDMN88PsaugU-AQ3W7nqy3iBPBRSoIKQBO2Ah4XeV8CsUpG3EuRC6k-jhnFyGsOQcoFYzYw9wuVzEzjrrOGku7GDLXZdiTxyW1mdunJDofst5iFgxuUtHTBqPtKVt63K8u2VmHm0BXxzhm70-P8-Yln709vzb3s9wUUsZ8sQApVSsMFDUhVFgj8loYpRZliRKB41QoKLlsDZHpFLRSlq1Qpi2mpLpizMRhrvEuBE-d3nu7Rf-tgevBgl7rwYIeLOiDhQTdHKAvWrguDB8a-gU552VR1mlvyqBK3dP_dzc2Jgtu17jPXUzo3QGlpKC35PURb60nE3Xr7F93_gDz_IbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tight coefficients of averaged operators via scaled relative graph</title><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Huang, Xinmeng ; Ryu, Ernest K. ; Yin, Wotao</creator><creatorcontrib>Huang, Xinmeng ; Ryu, Ernest K. ; Yin, Wotao</creatorcontrib><description>Many iterative methods in optimization are fixed-point iterations with averaged operators. As such methods converge at an O(1/k) rate with the constant determined by the averagedness coefficient, establishing small averagedness coefficients for operators is of broad interest. In this paper, we show that the averagedness coefficients of the composition of averaged operators by Ogura and Yamada (2002) [21] and the three-operator splitting by Davis and Yin (2017) [9] are tight. The analysis relies on the scaled relative graph, a geometric tool recently proposed by Ryu et al. (2019) [25].</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2020.124211</identifier><language>eng</language><publisher>SAN DIEGO: Elsevier Inc</publisher><subject>Averaged operator ; Composition of operators ; Euclidean geometry ; Mathematics ; Mathematics, Applied ; Nonexpansive operator ; Physical Sciences ; Science & Technology ; Three operators</subject><ispartof>Journal of mathematical analysis and applications, 2020-10, Vol.490 (1), p.124211, Article 124211</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000535982700016</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c344t-bb1447d2c139ea16a9aa092c77b55a4a10a8271504dceecf71d445d27cd38e7f3</citedby><cites>FETCH-LOGICAL-c344t-bb1447d2c139ea16a9aa092c77b55a4a10a8271504dceecf71d445d27cd38e7f3</cites><orcidid>0000-0001-6820-9095 ; 0000-0001-6697-9731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmaa.2020.124211$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Huang, Xinmeng</creatorcontrib><creatorcontrib>Ryu, Ernest K.</creatorcontrib><creatorcontrib>Yin, Wotao</creatorcontrib><title>Tight coefficients of averaged operators via scaled relative graph</title><title>Journal of mathematical analysis and applications</title><addtitle>J MATH ANAL APPL</addtitle><description>Many iterative methods in optimization are fixed-point iterations with averaged operators. As such methods converge at an O(1/k) rate with the constant determined by the averagedness coefficient, establishing small averagedness coefficients for operators is of broad interest. In this paper, we show that the averagedness coefficients of the composition of averaged operators by Ogura and Yamada (2002) [21] and the three-operator splitting by Davis and Yin (2017) [9] are tight. The analysis relies on the scaled relative graph, a geometric tool recently proposed by Ryu et al. (2019) [25].</description><subject>Averaged operator</subject><subject>Composition of operators</subject><subject>Euclidean geometry</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Nonexpansive operator</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Three operators</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkEtLAzEQgIMoWKt_wNPeZWsmm910wYsuvqDgpYK3MM3OtiltU5K44r83S4tH8TTDMN88PsaugU-AQ3W7nqy3iBPBRSoIKQBO2Ah4XeV8CsUpG3EuRC6k-jhnFyGsOQcoFYzYw9wuVzEzjrrOGku7GDLXZdiTxyW1mdunJDofst5iFgxuUtHTBqPtKVt63K8u2VmHm0BXxzhm70-P8-Yln709vzb3s9wUUsZ8sQApVSsMFDUhVFgj8loYpRZliRKB41QoKLlsDZHpFLRSlq1Qpi2mpLpizMRhrvEuBE-d3nu7Rf-tgevBgl7rwYIeLOiDhQTdHKAvWrguDB8a-gU552VR1mlvyqBK3dP_dzc2Jgtu17jPXUzo3QGlpKC35PURb60nE3Xr7F93_gDz_IbQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Huang, Xinmeng</creator><creator>Ryu, Ernest K.</creator><creator>Yin, Wotao</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6820-9095</orcidid><orcidid>https://orcid.org/0000-0001-6697-9731</orcidid></search><sort><creationdate>20201001</creationdate><title>Tight coefficients of averaged operators via scaled relative graph</title><author>Huang, Xinmeng ; Ryu, Ernest K. ; Yin, Wotao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-bb1447d2c139ea16a9aa092c77b55a4a10a8271504dceecf71d445d27cd38e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Averaged operator</topic><topic>Composition of operators</topic><topic>Euclidean geometry</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Nonexpansive operator</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Three operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xinmeng</creatorcontrib><creatorcontrib>Ryu, Ernest K.</creatorcontrib><creatorcontrib>Yin, Wotao</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xinmeng</au><au>Ryu, Ernest K.</au><au>Yin, Wotao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight coefficients of averaged operators via scaled relative graph</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><stitle>J MATH ANAL APPL</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>490</volume><issue>1</issue><spage>124211</spage><pages>124211-</pages><artnum>124211</artnum><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>Many iterative methods in optimization are fixed-point iterations with averaged operators. As such methods converge at an O(1/k) rate with the constant determined by the averagedness coefficient, establishing small averagedness coefficients for operators is of broad interest. In this paper, we show that the averagedness coefficients of the composition of averaged operators by Ogura and Yamada (2002) [21] and the three-operator splitting by Davis and Yin (2017) [9] are tight. The analysis relies on the scaled relative graph, a geometric tool recently proposed by Ryu et al. (2019) [25].</abstract><cop>SAN DIEGO</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2020.124211</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6820-9095</orcidid><orcidid>https://orcid.org/0000-0001-6697-9731</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2020-10, Vol.490 (1), p.124211, Article 124211 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_webofscience_primary_000535982700016 |
source | Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals |
subjects | Averaged operator Composition of operators Euclidean geometry Mathematics Mathematics, Applied Nonexpansive operator Physical Sciences Science & Technology Three operators |
title | Tight coefficients of averaged operators via scaled relative graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20coefficients%20of%20averaged%20operators%20via%20scaled%20relative%20graph&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Huang,%20Xinmeng&rft.date=2020-10-01&rft.volume=490&rft.issue=1&rft.spage=124211&rft.pages=124211-&rft.artnum=124211&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2020.124211&rft_dat=%3Celsevier_webof%3ES0022247X20303735%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X20303735&rfr_iscdi=true |