Optical coherence tomography neurodegenerative findings in patients with bipolar disorder

Introduction Neuroimaging studies of patients with bipolar disorder (BD) have recently revealed neurodegenerative changes in the central nervous system. Optical coherence tomography (OCT) imaging of the retina, as an extension of brain, may be a biomarker in understanding the neurobiology of the dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asia-Pacific psychiatry 2020-12, Vol.12 (4), p.e12394-n/a, Article 12394
Hauptverfasser: Gokcinar, Nesrin Buyuktortop, Buturak, Sadiye Visal, Ozkal, Fatma, Ozcicek, Gamze, Yumusak, Mehmet Erhan, Turgal, Ebru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction Neuroimaging studies of patients with bipolar disorder (BD) have recently revealed neurodegenerative changes in the central nervous system. Optical coherence tomography (OCT) imaging of the retina, as an extension of brain, may be a biomarker in understanding the neurobiology of the disease. To assess OCT as a tool to detect neurodegeneration in BD we compared the retinal changes between patients with BD and healthy individuals. Methods We performed complete ophthalmological examinations and took OCT images for 70 eyes of 70 patients with BD, and for age and sex‐matched individual controls. We compared retinal nerve fiber layers (RNFLs) and total retinal (TR) thickness in the peripapillary areas; and ganglion cell complexes (GCCs) and TR thickness in the maculas between the groups. Results The mean age of the patients was 40.41 ± 13.22 years and that of the controls 40.20 ± 13.03 years. The men/women ratios were 37/33 in both groups. BD was significantly associated with a decrease in the average peripapillary RNFL, with the average peripapillary TR, and with the average GCC thickness (P = .033, P = .008, and P = .009, respectively). The peripapillary RNFL and TR thinnings were prominent in the superior (P = .039, P = .033, respectively) and inferior quadrants (P = .031, P = .018, respectively). The BD effects on GCC thinning was prominent in the superior half (P = .001) and in the nasal sectors (except in the inner superonasal sector; all P 
ISSN:1758-5864
1758-5872
DOI:10.1111/appy.12394