Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry

Sensitive real-time detection of vapors produced by the precursors, reagents and solvents used in the illegal drugs manufacture represents a priority nowadays. Acetic anhydride (AA) is the key chemical used as acetylation agent in producing the illegal drugs heroin and methaqualone. This study was d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2020-04, Vol.25 (8), p.1852, Article 1852
Hauptverfasser: Bocos-Bintintan, Victor, Ghira, George-Bogdan, Anton, Mircea, Martiniuc, Aurel-Vasile, Ratiu, Ileana-Andreea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1852
container_title Molecules (Basel, Switzerland)
container_volume 25
creator Bocos-Bintintan, Victor
Ghira, George-Bogdan
Anton, Mircea
Martiniuc, Aurel-Vasile
Ratiu, Ileana-Andreea
description Sensitive real-time detection of vapors produced by the precursors, reagents and solvents used in the illegal drugs manufacture represents a priority nowadays. Acetic anhydride (AA) is the key chemical used as acetylation agent in producing the illegal drugs heroin and methaqualone. This study was directed towards quick detection and quantification of AA in air, using two fast and very sensitive analytical techniques: photoionization detection (PID) and ion mobility spectrometry (IMS). Results obtained indicated that both PID and IMS can sense AA at ultra-trace levels in air, but while PID produces a non-selective response, IMS offers richer information. Ion mobility spectrometric response in the positive ion mode presented one product ion, at reduced ion mobility K-0 of 1.89 cm(2) V-1 s(-1) (almost overlapped with positive reactant ion peak), while in the negative ion mode two well separated product ions, with K-0 of 1.90 and 1.71 cm(2) V-1 s(-1), were noticed. Our study showed that by using a portable, commercial IMS system (model Mini IMS, I.U.T. GmbH Berlin) AA can be easily measured at concentrations of 0.05 ppmv (0.2 mg m(-3)) in negative ion mode. Best selectivity and sensitivity of the IMS response were therefore achieved in the negative operation mode.
doi_str_mv 10.3390/molecules25081852
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000534617500040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_760d8525d5474477b6c3ecab4dc3f827</doaj_id><sourcerecordid>2393246559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-ca0be185f4b2ea9150f5964f219e553dc60dddc7669d455ec1d365ca71ad42dc3</originalsourceid><addsrcrecordid>eNqNks1uEzEQgFcIREvhAbggS1yQUMC_u9kLUpTyEykIRFuulteeTRw5drC9ReFZeFicpIQWLpw88nzzaWY0VfWU4FeMtfj1OjjQg4NEBR6TsaD3qlPCKR4xzNv7t-KT6lFKK4wp4UQ8rE4YZaSu6_a0-nkBPlm_QJ9jUcUUYkKhRzPnYKEcOo_DIo2-qI016Bwy6GyD3wETDdlqNPHLrYnWAPqqNrtaldFlVBrQHK7BJXR1kC9DDqXS_lB7wR-V8gbNyvsxdNbZvEUXm5KJYQ05bh9XD3rlEjy5ec-qq3dvL6cfRvNP72fTyXykecvySCvcQRm_5x0F1RKBe9HWvKekBSGY0TU2xuimDGy4EKCJYbXQqiHKcGo0O6tmB68JaiU30a5V3MqgrNx_hLiQKpZxHcimuMqihRG84bxpuloz0KrjRdOPaVNcbw6uzdCtwWjwOSp3R3o34-1SLsK1bGjpV7RF8OJGEMO3AVKWa5s0OKc8hCFJylomGlYTUdDnf6GrMERfVrWnKK_FXkgOlI4hpQj9sRmC5e6O5D93VGqe3Z7iWPH7cArw8gB8hy70SVvwGo4YxlgwXpNGlIjjQo__n57avL-SaRh8Zr8A6HjqHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393246559</pqid></control><display><type>article</type><title>Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bocos-Bintintan, Victor ; Ghira, George-Bogdan ; Anton, Mircea ; Martiniuc, Aurel-Vasile ; Ratiu, Ileana-Andreea</creator><creatorcontrib>Bocos-Bintintan, Victor ; Ghira, George-Bogdan ; Anton, Mircea ; Martiniuc, Aurel-Vasile ; Ratiu, Ileana-Andreea</creatorcontrib><description>Sensitive real-time detection of vapors produced by the precursors, reagents and solvents used in the illegal drugs manufacture represents a priority nowadays. Acetic anhydride (AA) is the key chemical used as acetylation agent in producing the illegal drugs heroin and methaqualone. This study was directed towards quick detection and quantification of AA in air, using two fast and very sensitive analytical techniques: photoionization detection (PID) and ion mobility spectrometry (IMS). Results obtained indicated that both PID and IMS can sense AA at ultra-trace levels in air, but while PID produces a non-selective response, IMS offers richer information. Ion mobility spectrometric response in the positive ion mode presented one product ion, at reduced ion mobility K-0 of 1.89 cm(2) V-1 s(-1) (almost overlapped with positive reactant ion peak), while in the negative ion mode two well separated product ions, with K-0 of 1.90 and 1.71 cm(2) V-1 s(-1), were noticed. Our study showed that by using a portable, commercial IMS system (model Mini IMS, I.U.T. GmbH Berlin) AA can be easily measured at concentrations of 0.05 ppmv (0.2 mg m(-3)) in negative ion mode. Best selectivity and sensitivity of the IMS response were therefore achieved in the negative operation mode.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules25081852</identifier><identifier>PMID: 32316669</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Acetic anhydride ; acetic anhydride (AA) ; Acetic Anhydrides - analysis ; Acetylation ; Anhydrides ; Biochemistry &amp; Molecular Biology ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensing Techniques - standards ; Cellulose acetate ; Chemicals ; Chemistry ; Chemistry, Multidisciplinary ; Drug abuse ; Drugs ; Explosives ; Heroin ; illegal drugs precursors ; Illicit Drugs - analysis ; Illicit Drugs - chemistry ; Investigations ; Ion Mobility Spectrometry - instrumentation ; Ion Mobility Spectrometry - methods ; Ion Mobility Spectrometry - standards ; ion mobility spectrometry IMS ; Ionic mobility ; Ions ; Law enforcement ; Life Sciences &amp; Biomedicine ; Manufacturing ; Mobility ; Morphine ; Narcotics ; Negative ions ; Occupational safety ; Photoionization ; photoionization detection PID ; Physical Sciences ; Positive ions ; Precursors ; Reagents ; Reproducibility of Results ; Science &amp; Technology ; Scientific imaging ; Selectivity ; Spectrometry ; Spectroscopy ; trace detection ; Trace Elements - analysis ; Trace levels ; Vapors</subject><ispartof>Molecules (Basel, Switzerland), 2020-04, Vol.25 (8), p.1852, Article 1852</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000534617500040</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c493t-ca0be185f4b2ea9150f5964f219e553dc60dddc7669d455ec1d365ca71ad42dc3</citedby><cites>FETCH-LOGICAL-c493t-ca0be185f4b2ea9150f5964f219e553dc60dddc7669d455ec1d365ca71ad42dc3</cites><orcidid>0000-0003-2615-684X ; 0000-0003-0836-1049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221959/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221959/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32316669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bocos-Bintintan, Victor</creatorcontrib><creatorcontrib>Ghira, George-Bogdan</creatorcontrib><creatorcontrib>Anton, Mircea</creatorcontrib><creatorcontrib>Martiniuc, Aurel-Vasile</creatorcontrib><creatorcontrib>Ratiu, Ileana-Andreea</creatorcontrib><title>Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry</title><title>Molecules (Basel, Switzerland)</title><addtitle>MOLECULES</addtitle><addtitle>Molecules</addtitle><description>Sensitive real-time detection of vapors produced by the precursors, reagents and solvents used in the illegal drugs manufacture represents a priority nowadays. Acetic anhydride (AA) is the key chemical used as acetylation agent in producing the illegal drugs heroin and methaqualone. This study was directed towards quick detection and quantification of AA in air, using two fast and very sensitive analytical techniques: photoionization detection (PID) and ion mobility spectrometry (IMS). Results obtained indicated that both PID and IMS can sense AA at ultra-trace levels in air, but while PID produces a non-selective response, IMS offers richer information. Ion mobility spectrometric response in the positive ion mode presented one product ion, at reduced ion mobility K-0 of 1.89 cm(2) V-1 s(-1) (almost overlapped with positive reactant ion peak), while in the negative ion mode two well separated product ions, with K-0 of 1.90 and 1.71 cm(2) V-1 s(-1), were noticed. Our study showed that by using a portable, commercial IMS system (model Mini IMS, I.U.T. GmbH Berlin) AA can be easily measured at concentrations of 0.05 ppmv (0.2 mg m(-3)) in negative ion mode. Best selectivity and sensitivity of the IMS response were therefore achieved in the negative operation mode.</description><subject>Acetic anhydride</subject><subject>acetic anhydride (AA)</subject><subject>Acetic Anhydrides - analysis</subject><subject>Acetylation</subject><subject>Anhydrides</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensing Techniques - standards</subject><subject>Cellulose acetate</subject><subject>Chemicals</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Drug abuse</subject><subject>Drugs</subject><subject>Explosives</subject><subject>Heroin</subject><subject>illegal drugs precursors</subject><subject>Illicit Drugs - analysis</subject><subject>Illicit Drugs - chemistry</subject><subject>Investigations</subject><subject>Ion Mobility Spectrometry - instrumentation</subject><subject>Ion Mobility Spectrometry - methods</subject><subject>Ion Mobility Spectrometry - standards</subject><subject>ion mobility spectrometry IMS</subject><subject>Ionic mobility</subject><subject>Ions</subject><subject>Law enforcement</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Manufacturing</subject><subject>Mobility</subject><subject>Morphine</subject><subject>Narcotics</subject><subject>Negative ions</subject><subject>Occupational safety</subject><subject>Photoionization</subject><subject>photoionization detection PID</subject><subject>Physical Sciences</subject><subject>Positive ions</subject><subject>Precursors</subject><subject>Reagents</subject><subject>Reproducibility of Results</subject><subject>Science &amp; Technology</subject><subject>Scientific imaging</subject><subject>Selectivity</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><subject>trace detection</subject><subject>Trace Elements - analysis</subject><subject>Trace levels</subject><subject>Vapors</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1uEzEQgFcIREvhAbggS1yQUMC_u9kLUpTyEykIRFuulteeTRw5drC9ReFZeFicpIQWLpw88nzzaWY0VfWU4FeMtfj1OjjQg4NEBR6TsaD3qlPCKR4xzNv7t-KT6lFKK4wp4UQ8rE4YZaSu6_a0-nkBPlm_QJ9jUcUUYkKhRzPnYKEcOo_DIo2-qI016Bwy6GyD3wETDdlqNPHLrYnWAPqqNrtaldFlVBrQHK7BJXR1kC9DDqXS_lB7wR-V8gbNyvsxdNbZvEUXm5KJYQ05bh9XD3rlEjy5ec-qq3dvL6cfRvNP72fTyXykecvySCvcQRm_5x0F1RKBe9HWvKekBSGY0TU2xuimDGy4EKCJYbXQqiHKcGo0O6tmB68JaiU30a5V3MqgrNx_hLiQKpZxHcimuMqihRG84bxpuloz0KrjRdOPaVNcbw6uzdCtwWjwOSp3R3o34-1SLsK1bGjpV7RF8OJGEMO3AVKWa5s0OKc8hCFJylomGlYTUdDnf6GrMERfVrWnKK_FXkgOlI4hpQj9sRmC5e6O5D93VGqe3Z7iWPH7cArw8gB8hy70SVvwGo4YxlgwXpNGlIjjQo__n57avL-SaRh8Zr8A6HjqHg</recordid><startdate>20200417</startdate><enddate>20200417</enddate><creator>Bocos-Bintintan, Victor</creator><creator>Ghira, George-Bogdan</creator><creator>Anton, Mircea</creator><creator>Martiniuc, Aurel-Vasile</creator><creator>Ratiu, Ileana-Andreea</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2615-684X</orcidid><orcidid>https://orcid.org/0000-0003-0836-1049</orcidid></search><sort><creationdate>20200417</creationdate><title>Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry</title><author>Bocos-Bintintan, Victor ; Ghira, George-Bogdan ; Anton, Mircea ; Martiniuc, Aurel-Vasile ; Ratiu, Ileana-Andreea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-ca0be185f4b2ea9150f5964f219e553dc60dddc7669d455ec1d365ca71ad42dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic anhydride</topic><topic>acetic anhydride (AA)</topic><topic>Acetic Anhydrides - analysis</topic><topic>Acetylation</topic><topic>Anhydrides</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensing Techniques - standards</topic><topic>Cellulose acetate</topic><topic>Chemicals</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Drug abuse</topic><topic>Drugs</topic><topic>Explosives</topic><topic>Heroin</topic><topic>illegal drugs precursors</topic><topic>Illicit Drugs - analysis</topic><topic>Illicit Drugs - chemistry</topic><topic>Investigations</topic><topic>Ion Mobility Spectrometry - instrumentation</topic><topic>Ion Mobility Spectrometry - methods</topic><topic>Ion Mobility Spectrometry - standards</topic><topic>ion mobility spectrometry IMS</topic><topic>Ionic mobility</topic><topic>Ions</topic><topic>Law enforcement</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Manufacturing</topic><topic>Mobility</topic><topic>Morphine</topic><topic>Narcotics</topic><topic>Negative ions</topic><topic>Occupational safety</topic><topic>Photoionization</topic><topic>photoionization detection PID</topic><topic>Physical Sciences</topic><topic>Positive ions</topic><topic>Precursors</topic><topic>Reagents</topic><topic>Reproducibility of Results</topic><topic>Science &amp; Technology</topic><topic>Scientific imaging</topic><topic>Selectivity</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><topic>trace detection</topic><topic>Trace Elements - analysis</topic><topic>Trace levels</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bocos-Bintintan, Victor</creatorcontrib><creatorcontrib>Ghira, George-Bogdan</creatorcontrib><creatorcontrib>Anton, Mircea</creatorcontrib><creatorcontrib>Martiniuc, Aurel-Vasile</creatorcontrib><creatorcontrib>Ratiu, Ileana-Andreea</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bocos-Bintintan, Victor</au><au>Ghira, George-Bogdan</au><au>Anton, Mircea</au><au>Martiniuc, Aurel-Vasile</au><au>Ratiu, Ileana-Andreea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><stitle>MOLECULES</stitle><addtitle>Molecules</addtitle><date>2020-04-17</date><risdate>2020</risdate><volume>25</volume><issue>8</issue><spage>1852</spage><pages>1852-</pages><artnum>1852</artnum><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Sensitive real-time detection of vapors produced by the precursors, reagents and solvents used in the illegal drugs manufacture represents a priority nowadays. Acetic anhydride (AA) is the key chemical used as acetylation agent in producing the illegal drugs heroin and methaqualone. This study was directed towards quick detection and quantification of AA in air, using two fast and very sensitive analytical techniques: photoionization detection (PID) and ion mobility spectrometry (IMS). Results obtained indicated that both PID and IMS can sense AA at ultra-trace levels in air, but while PID produces a non-selective response, IMS offers richer information. Ion mobility spectrometric response in the positive ion mode presented one product ion, at reduced ion mobility K-0 of 1.89 cm(2) V-1 s(-1) (almost overlapped with positive reactant ion peak), while in the negative ion mode two well separated product ions, with K-0 of 1.90 and 1.71 cm(2) V-1 s(-1), were noticed. Our study showed that by using a portable, commercial IMS system (model Mini IMS, I.U.T. GmbH Berlin) AA can be easily measured at concentrations of 0.05 ppmv (0.2 mg m(-3)) in negative ion mode. Best selectivity and sensitivity of the IMS response were therefore achieved in the negative operation mode.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32316669</pmid><doi>10.3390/molecules25081852</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2615-684X</orcidid><orcidid>https://orcid.org/0000-0003-0836-1049</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2020-04, Vol.25 (8), p.1852, Article 1852
issn 1420-3049
1420-3049
language eng
recordid cdi_webofscience_primary_000534617500040
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetic anhydride
acetic anhydride (AA)
Acetic Anhydrides - analysis
Acetylation
Anhydrides
Biochemistry & Molecular Biology
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensing Techniques - standards
Cellulose acetate
Chemicals
Chemistry
Chemistry, Multidisciplinary
Drug abuse
Drugs
Explosives
Heroin
illegal drugs precursors
Illicit Drugs - analysis
Illicit Drugs - chemistry
Investigations
Ion Mobility Spectrometry - instrumentation
Ion Mobility Spectrometry - methods
Ion Mobility Spectrometry - standards
ion mobility spectrometry IMS
Ionic mobility
Ions
Law enforcement
Life Sciences & Biomedicine
Manufacturing
Mobility
Morphine
Narcotics
Negative ions
Occupational safety
Photoionization
photoionization detection PID
Physical Sciences
Positive ions
Precursors
Reagents
Reproducibility of Results
Science & Technology
Scientific imaging
Selectivity
Spectrometry
Spectroscopy
trace detection
Trace Elements - analysis
Trace levels
Vapors
title Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T19%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensing%20Precursors%20of%20Illegal%20Drugs-Rapid%20Detection%20of%20Acetic%20Anhydride%20Vapors%20at%20Trace%20Levels%20Using%20Photoionization%20Detection%20and%20Ion%20Mobility%20Spectrometry&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Bocos-Bintintan,%20Victor&rft.date=2020-04-17&rft.volume=25&rft.issue=8&rft.spage=1852&rft.pages=1852-&rft.artnum=1852&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules25081852&rft_dat=%3Cproquest_webof%3E2393246559%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393246559&rft_id=info:pmid/32316669&rft_doaj_id=oai_doaj_org_article_760d8525d5474477b6c3ecab4dc3f827&rfr_iscdi=true