Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry
Sensitive real-time detection of vapors produced by the precursors, reagents and solvents used in the illegal drugs manufacture represents a priority nowadays. Acetic anhydride (AA) is the key chemical used as acetylation agent in producing the illegal drugs heroin and methaqualone. This study was d...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2020-04, Vol.25 (8), p.1852, Article 1852 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1852 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 25 |
creator | Bocos-Bintintan, Victor Ghira, George-Bogdan Anton, Mircea Martiniuc, Aurel-Vasile Ratiu, Ileana-Andreea |
description | Sensitive real-time detection of vapors produced by the precursors, reagents and solvents used in the illegal drugs manufacture represents a priority nowadays. Acetic anhydride (AA) is the key chemical used as acetylation agent in producing the illegal drugs heroin and methaqualone. This study was directed towards quick detection and quantification of AA in air, using two fast and very sensitive analytical techniques: photoionization detection (PID) and ion mobility spectrometry (IMS). Results obtained indicated that both PID and IMS can sense AA at ultra-trace levels in air, but while PID produces a non-selective response, IMS offers richer information. Ion mobility spectrometric response in the positive ion mode presented one product ion, at reduced ion mobility K-0 of 1.89 cm(2) V-1 s(-1) (almost overlapped with positive reactant ion peak), while in the negative ion mode two well separated product ions, with K-0 of 1.90 and 1.71 cm(2) V-1 s(-1), were noticed. Our study showed that by using a portable, commercial IMS system (model Mini IMS, I.U.T. GmbH Berlin) AA can be easily measured at concentrations of 0.05 ppmv (0.2 mg m(-3)) in negative ion mode. Best selectivity and sensitivity of the IMS response were therefore achieved in the negative operation mode. |
doi_str_mv | 10.3390/molecules25081852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000534617500040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_760d8525d5474477b6c3ecab4dc3f827</doaj_id><sourcerecordid>2393246559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-ca0be185f4b2ea9150f5964f219e553dc60dddc7669d455ec1d365ca71ad42dc3</originalsourceid><addsrcrecordid>eNqNks1uEzEQgFcIREvhAbggS1yQUMC_u9kLUpTyEykIRFuulteeTRw5drC9ReFZeFicpIQWLpw88nzzaWY0VfWU4FeMtfj1OjjQg4NEBR6TsaD3qlPCKR4xzNv7t-KT6lFKK4wp4UQ8rE4YZaSu6_a0-nkBPlm_QJ9jUcUUYkKhRzPnYKEcOo_DIo2-qI016Bwy6GyD3wETDdlqNPHLrYnWAPqqNrtaldFlVBrQHK7BJXR1kC9DDqXS_lB7wR-V8gbNyvsxdNbZvEUXm5KJYQ05bh9XD3rlEjy5ec-qq3dvL6cfRvNP72fTyXykecvySCvcQRm_5x0F1RKBe9HWvKekBSGY0TU2xuimDGy4EKCJYbXQqiHKcGo0O6tmB68JaiU30a5V3MqgrNx_hLiQKpZxHcimuMqihRG84bxpuloz0KrjRdOPaVNcbw6uzdCtwWjwOSp3R3o34-1SLsK1bGjpV7RF8OJGEMO3AVKWa5s0OKc8hCFJylomGlYTUdDnf6GrMERfVrWnKK_FXkgOlI4hpQj9sRmC5e6O5D93VGqe3Z7iWPH7cArw8gB8hy70SVvwGo4YxlgwXpNGlIjjQo__n57avL-SaRh8Zr8A6HjqHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393246559</pqid></control><display><type>article</type><title>Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bocos-Bintintan, Victor ; Ghira, George-Bogdan ; Anton, Mircea ; Martiniuc, Aurel-Vasile ; Ratiu, Ileana-Andreea</creator><creatorcontrib>Bocos-Bintintan, Victor ; Ghira, George-Bogdan ; Anton, Mircea ; Martiniuc, Aurel-Vasile ; Ratiu, Ileana-Andreea</creatorcontrib><description>Sensitive real-time detection of vapors produced by the precursors, reagents and solvents used in the illegal drugs manufacture represents a priority nowadays. Acetic anhydride (AA) is the key chemical used as acetylation agent in producing the illegal drugs heroin and methaqualone. This study was directed towards quick detection and quantification of AA in air, using two fast and very sensitive analytical techniques: photoionization detection (PID) and ion mobility spectrometry (IMS). Results obtained indicated that both PID and IMS can sense AA at ultra-trace levels in air, but while PID produces a non-selective response, IMS offers richer information. Ion mobility spectrometric response in the positive ion mode presented one product ion, at reduced ion mobility K-0 of 1.89 cm(2) V-1 s(-1) (almost overlapped with positive reactant ion peak), while in the negative ion mode two well separated product ions, with K-0 of 1.90 and 1.71 cm(2) V-1 s(-1), were noticed. Our study showed that by using a portable, commercial IMS system (model Mini IMS, I.U.T. GmbH Berlin) AA can be easily measured at concentrations of 0.05 ppmv (0.2 mg m(-3)) in negative ion mode. Best selectivity and sensitivity of the IMS response were therefore achieved in the negative operation mode.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules25081852</identifier><identifier>PMID: 32316669</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Acetic anhydride ; acetic anhydride (AA) ; Acetic Anhydrides - analysis ; Acetylation ; Anhydrides ; Biochemistry & Molecular Biology ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensing Techniques - standards ; Cellulose acetate ; Chemicals ; Chemistry ; Chemistry, Multidisciplinary ; Drug abuse ; Drugs ; Explosives ; Heroin ; illegal drugs precursors ; Illicit Drugs - analysis ; Illicit Drugs - chemistry ; Investigations ; Ion Mobility Spectrometry - instrumentation ; Ion Mobility Spectrometry - methods ; Ion Mobility Spectrometry - standards ; ion mobility spectrometry IMS ; Ionic mobility ; Ions ; Law enforcement ; Life Sciences & Biomedicine ; Manufacturing ; Mobility ; Morphine ; Narcotics ; Negative ions ; Occupational safety ; Photoionization ; photoionization detection PID ; Physical Sciences ; Positive ions ; Precursors ; Reagents ; Reproducibility of Results ; Science & Technology ; Scientific imaging ; Selectivity ; Spectrometry ; Spectroscopy ; trace detection ; Trace Elements - analysis ; Trace levels ; Vapors</subject><ispartof>Molecules (Basel, Switzerland), 2020-04, Vol.25 (8), p.1852, Article 1852</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000534617500040</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c493t-ca0be185f4b2ea9150f5964f219e553dc60dddc7669d455ec1d365ca71ad42dc3</citedby><cites>FETCH-LOGICAL-c493t-ca0be185f4b2ea9150f5964f219e553dc60dddc7669d455ec1d365ca71ad42dc3</cites><orcidid>0000-0003-2615-684X ; 0000-0003-0836-1049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221959/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221959/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32316669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bocos-Bintintan, Victor</creatorcontrib><creatorcontrib>Ghira, George-Bogdan</creatorcontrib><creatorcontrib>Anton, Mircea</creatorcontrib><creatorcontrib>Martiniuc, Aurel-Vasile</creatorcontrib><creatorcontrib>Ratiu, Ileana-Andreea</creatorcontrib><title>Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry</title><title>Molecules (Basel, Switzerland)</title><addtitle>MOLECULES</addtitle><addtitle>Molecules</addtitle><description>Sensitive real-time detection of vapors produced by the precursors, reagents and solvents used in the illegal drugs manufacture represents a priority nowadays. Acetic anhydride (AA) is the key chemical used as acetylation agent in producing the illegal drugs heroin and methaqualone. This study was directed towards quick detection and quantification of AA in air, using two fast and very sensitive analytical techniques: photoionization detection (PID) and ion mobility spectrometry (IMS). Results obtained indicated that both PID and IMS can sense AA at ultra-trace levels in air, but while PID produces a non-selective response, IMS offers richer information. Ion mobility spectrometric response in the positive ion mode presented one product ion, at reduced ion mobility K-0 of 1.89 cm(2) V-1 s(-1) (almost overlapped with positive reactant ion peak), while in the negative ion mode two well separated product ions, with K-0 of 1.90 and 1.71 cm(2) V-1 s(-1), were noticed. Our study showed that by using a portable, commercial IMS system (model Mini IMS, I.U.T. GmbH Berlin) AA can be easily measured at concentrations of 0.05 ppmv (0.2 mg m(-3)) in negative ion mode. Best selectivity and sensitivity of the IMS response were therefore achieved in the negative operation mode.</description><subject>Acetic anhydride</subject><subject>acetic anhydride (AA)</subject><subject>Acetic Anhydrides - analysis</subject><subject>Acetylation</subject><subject>Anhydrides</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensing Techniques - standards</subject><subject>Cellulose acetate</subject><subject>Chemicals</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Drug abuse</subject><subject>Drugs</subject><subject>Explosives</subject><subject>Heroin</subject><subject>illegal drugs precursors</subject><subject>Illicit Drugs - analysis</subject><subject>Illicit Drugs - chemistry</subject><subject>Investigations</subject><subject>Ion Mobility Spectrometry - instrumentation</subject><subject>Ion Mobility Spectrometry - methods</subject><subject>Ion Mobility Spectrometry - standards</subject><subject>ion mobility spectrometry IMS</subject><subject>Ionic mobility</subject><subject>Ions</subject><subject>Law enforcement</subject><subject>Life Sciences & Biomedicine</subject><subject>Manufacturing</subject><subject>Mobility</subject><subject>Morphine</subject><subject>Narcotics</subject><subject>Negative ions</subject><subject>Occupational safety</subject><subject>Photoionization</subject><subject>photoionization detection PID</subject><subject>Physical Sciences</subject><subject>Positive ions</subject><subject>Precursors</subject><subject>Reagents</subject><subject>Reproducibility of Results</subject><subject>Science & Technology</subject><subject>Scientific imaging</subject><subject>Selectivity</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><subject>trace detection</subject><subject>Trace Elements - analysis</subject><subject>Trace levels</subject><subject>Vapors</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1uEzEQgFcIREvhAbggS1yQUMC_u9kLUpTyEykIRFuulteeTRw5drC9ReFZeFicpIQWLpw88nzzaWY0VfWU4FeMtfj1OjjQg4NEBR6TsaD3qlPCKR4xzNv7t-KT6lFKK4wp4UQ8rE4YZaSu6_a0-nkBPlm_QJ9jUcUUYkKhRzPnYKEcOo_DIo2-qI016Bwy6GyD3wETDdlqNPHLrYnWAPqqNrtaldFlVBrQHK7BJXR1kC9DDqXS_lB7wR-V8gbNyvsxdNbZvEUXm5KJYQ05bh9XD3rlEjy5ec-qq3dvL6cfRvNP72fTyXykecvySCvcQRm_5x0F1RKBe9HWvKekBSGY0TU2xuimDGy4EKCJYbXQqiHKcGo0O6tmB68JaiU30a5V3MqgrNx_hLiQKpZxHcimuMqihRG84bxpuloz0KrjRdOPaVNcbw6uzdCtwWjwOSp3R3o34-1SLsK1bGjpV7RF8OJGEMO3AVKWa5s0OKc8hCFJylomGlYTUdDnf6GrMERfVrWnKK_FXkgOlI4hpQj9sRmC5e6O5D93VGqe3Z7iWPH7cArw8gB8hy70SVvwGo4YxlgwXpNGlIjjQo__n57avL-SaRh8Zr8A6HjqHg</recordid><startdate>20200417</startdate><enddate>20200417</enddate><creator>Bocos-Bintintan, Victor</creator><creator>Ghira, George-Bogdan</creator><creator>Anton, Mircea</creator><creator>Martiniuc, Aurel-Vasile</creator><creator>Ratiu, Ileana-Andreea</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2615-684X</orcidid><orcidid>https://orcid.org/0000-0003-0836-1049</orcidid></search><sort><creationdate>20200417</creationdate><title>Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry</title><author>Bocos-Bintintan, Victor ; Ghira, George-Bogdan ; Anton, Mircea ; Martiniuc, Aurel-Vasile ; Ratiu, Ileana-Andreea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-ca0be185f4b2ea9150f5964f219e553dc60dddc7669d455ec1d365ca71ad42dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic anhydride</topic><topic>acetic anhydride (AA)</topic><topic>Acetic Anhydrides - analysis</topic><topic>Acetylation</topic><topic>Anhydrides</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensing Techniques - standards</topic><topic>Cellulose acetate</topic><topic>Chemicals</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Drug abuse</topic><topic>Drugs</topic><topic>Explosives</topic><topic>Heroin</topic><topic>illegal drugs precursors</topic><topic>Illicit Drugs - analysis</topic><topic>Illicit Drugs - chemistry</topic><topic>Investigations</topic><topic>Ion Mobility Spectrometry - instrumentation</topic><topic>Ion Mobility Spectrometry - methods</topic><topic>Ion Mobility Spectrometry - standards</topic><topic>ion mobility spectrometry IMS</topic><topic>Ionic mobility</topic><topic>Ions</topic><topic>Law enforcement</topic><topic>Life Sciences & Biomedicine</topic><topic>Manufacturing</topic><topic>Mobility</topic><topic>Morphine</topic><topic>Narcotics</topic><topic>Negative ions</topic><topic>Occupational safety</topic><topic>Photoionization</topic><topic>photoionization detection PID</topic><topic>Physical Sciences</topic><topic>Positive ions</topic><topic>Precursors</topic><topic>Reagents</topic><topic>Reproducibility of Results</topic><topic>Science & Technology</topic><topic>Scientific imaging</topic><topic>Selectivity</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><topic>trace detection</topic><topic>Trace Elements - analysis</topic><topic>Trace levels</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bocos-Bintintan, Victor</creatorcontrib><creatorcontrib>Ghira, George-Bogdan</creatorcontrib><creatorcontrib>Anton, Mircea</creatorcontrib><creatorcontrib>Martiniuc, Aurel-Vasile</creatorcontrib><creatorcontrib>Ratiu, Ileana-Andreea</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bocos-Bintintan, Victor</au><au>Ghira, George-Bogdan</au><au>Anton, Mircea</au><au>Martiniuc, Aurel-Vasile</au><au>Ratiu, Ileana-Andreea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><stitle>MOLECULES</stitle><addtitle>Molecules</addtitle><date>2020-04-17</date><risdate>2020</risdate><volume>25</volume><issue>8</issue><spage>1852</spage><pages>1852-</pages><artnum>1852</artnum><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Sensitive real-time detection of vapors produced by the precursors, reagents and solvents used in the illegal drugs manufacture represents a priority nowadays. Acetic anhydride (AA) is the key chemical used as acetylation agent in producing the illegal drugs heroin and methaqualone. This study was directed towards quick detection and quantification of AA in air, using two fast and very sensitive analytical techniques: photoionization detection (PID) and ion mobility spectrometry (IMS). Results obtained indicated that both PID and IMS can sense AA at ultra-trace levels in air, but while PID produces a non-selective response, IMS offers richer information. Ion mobility spectrometric response in the positive ion mode presented one product ion, at reduced ion mobility K-0 of 1.89 cm(2) V-1 s(-1) (almost overlapped with positive reactant ion peak), while in the negative ion mode two well separated product ions, with K-0 of 1.90 and 1.71 cm(2) V-1 s(-1), were noticed. Our study showed that by using a portable, commercial IMS system (model Mini IMS, I.U.T. GmbH Berlin) AA can be easily measured at concentrations of 0.05 ppmv (0.2 mg m(-3)) in negative ion mode. Best selectivity and sensitivity of the IMS response were therefore achieved in the negative operation mode.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32316669</pmid><doi>10.3390/molecules25081852</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2615-684X</orcidid><orcidid>https://orcid.org/0000-0003-0836-1049</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2020-04, Vol.25 (8), p.1852, Article 1852 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_webofscience_primary_000534617500040 |
source | MEDLINE; DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acetic anhydride acetic anhydride (AA) Acetic Anhydrides - analysis Acetylation Anhydrides Biochemistry & Molecular Biology Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensing Techniques - standards Cellulose acetate Chemicals Chemistry Chemistry, Multidisciplinary Drug abuse Drugs Explosives Heroin illegal drugs precursors Illicit Drugs - analysis Illicit Drugs - chemistry Investigations Ion Mobility Spectrometry - instrumentation Ion Mobility Spectrometry - methods Ion Mobility Spectrometry - standards ion mobility spectrometry IMS Ionic mobility Ions Law enforcement Life Sciences & Biomedicine Manufacturing Mobility Morphine Narcotics Negative ions Occupational safety Photoionization photoionization detection PID Physical Sciences Positive ions Precursors Reagents Reproducibility of Results Science & Technology Scientific imaging Selectivity Spectrometry Spectroscopy trace detection Trace Elements - analysis Trace levels Vapors |
title | Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T13%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensing%20Precursors%20of%20Illegal%20Drugs-Rapid%20Detection%20of%20Acetic%20Anhydride%20Vapors%20at%20Trace%20Levels%20Using%20Photoionization%20Detection%20and%20Ion%20Mobility%20Spectrometry&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Bocos-Bintintan,%20Victor&rft.date=2020-04-17&rft.volume=25&rft.issue=8&rft.spage=1852&rft.pages=1852-&rft.artnum=1852&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules25081852&rft_dat=%3Cproquest_webof%3E2393246559%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393246559&rft_id=info:pmid/32316669&rft_doaj_id=oai_doaj_org_article_760d8525d5474477b6c3ecab4dc3f827&rfr_iscdi=true |