Combining Supervised and Unsupervised Machine Learning Methods for Phenotypic Functional Genomics Screening

There has been an increase in the use of machine learning and artificial intelligence (AI) for the analysis of image-based cellular screens. The accuracy of these analyses, however, is greatly dependent on the quality of the training sets used for building the machine learning models. We propose tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SLAS discovery 2020-07, Vol.25 (6), p.655-664, Article 2472555220919345
Hauptverfasser: Omta, Wienand A., van Heesbeen, Roy G., Shen, Ian, de Nobel, Jacob, Robers, Desmond, van der Velden, Lieke M., Medema, René H., Siebes, Arno P.J.M., Feelders, Ad J., Brinkkemper, Sjaak, Klumperman, Judith S., Spruit, Marco René, Brinkhuis, Matthieu J.S., Egan, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 664
container_issue 6
container_start_page 655
container_title SLAS discovery
container_volume 25
creator Omta, Wienand A.
van Heesbeen, Roy G.
Shen, Ian
de Nobel, Jacob
Robers, Desmond
van der Velden, Lieke M.
Medema, René H.
Siebes, Arno P.J.M.
Feelders, Ad J.
Brinkkemper, Sjaak
Klumperman, Judith S.
Spruit, Marco René
Brinkhuis, Matthieu J.S.
Egan, David A.
description There has been an increase in the use of machine learning and artificial intelligence (AI) for the analysis of image-based cellular screens. The accuracy of these analyses, however, is greatly dependent on the quality of the training sets used for building the machine learning models. We propose that unsupervised exploratory methods should first be applied to the data set to gain a better insight into the quality of the data. This improves the selection and labeling of data for creating training sets before the application of machine learning. We demonstrate this using a high-content genome-wide small interfering RNA screen. We perform an unsupervised exploratory data analysis to facilitate the identification of four robust phenotypes, which we subsequently use as a training set for building a high-quality random forest machine learning model to differentiate four phenotypes with an accuracy of 91.1% and a kappa of 0.85. Our approach enhanced our ability to extract new knowledge from the screen when compared with the use of unsupervised methods alone.
doi_str_mv 10.1177/2472555220919345
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000534051500001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_2472555220919345</sage_id><els_id>S2472555222065741</els_id><sourcerecordid>2402422436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-74d47c42d972d86b39faef04cc5180150c9f12a5d67b5a6ec558a60a8962a3a33</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoNYbNn23ivJpSBj8zkf3slgq7DFQu11yCRnuqk7yZrMVPrvzTjbFQSl5CLh8LxJznMQek3Je0qr6pyJikkpGSMNbbiQL9DJXCqkLMnLw1myY3SW0j0hhFYlz-sVOuZMEMJKdoK-t2HonHf-Dt9MO4gPLoHF2lt869OfwpU2G-cBr0HH3_AVjJtgE-5DxNcb8GF83DmDLyZvRhe83uLLXBycSfjGRIA5dIqOer1NcLbfV-j24tO39nOx_nr5pf24LozgZCwqYUVlBLNNxWxddrzpNfREGCNpTagkpukp09KWVSd1CUbKWpdE103JNNecr9Db5d5dDD8mSKMaXDKw3WoPYUoqN88EYyLLWCGyoCaGlCL0ahfdoOOjokTNltXflnPkzf72qRvAHgJPTjPwbgF-Qhf6ZBx4Awcsz0FyQWTuYx5Jpuvn060b9ay3DZMfc7RYoknfgboPU8ze0_9-_mHhIct_cBDV_jnrIphR2eD-Hf4FIMm3lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402422436</pqid></control><display><type>article</type><title>Combining Supervised and Unsupervised Machine Learning Methods for Phenotypic Functional Genomics Screening</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Omta, Wienand A. ; van Heesbeen, Roy G. ; Shen, Ian ; de Nobel, Jacob ; Robers, Desmond ; van der Velden, Lieke M. ; Medema, René H. ; Siebes, Arno P.J.M. ; Feelders, Ad J. ; Brinkkemper, Sjaak ; Klumperman, Judith S. ; Spruit, Marco René ; Brinkhuis, Matthieu J.S. ; Egan, David A.</creator><creatorcontrib>Omta, Wienand A. ; van Heesbeen, Roy G. ; Shen, Ian ; de Nobel, Jacob ; Robers, Desmond ; van der Velden, Lieke M. ; Medema, René H. ; Siebes, Arno P.J.M. ; Feelders, Ad J. ; Brinkkemper, Sjaak ; Klumperman, Judith S. ; Spruit, Marco René ; Brinkhuis, Matthieu J.S. ; Egan, David A.</creatorcontrib><description>There has been an increase in the use of machine learning and artificial intelligence (AI) for the analysis of image-based cellular screens. The accuracy of these analyses, however, is greatly dependent on the quality of the training sets used for building the machine learning models. We propose that unsupervised exploratory methods should first be applied to the data set to gain a better insight into the quality of the data. This improves the selection and labeling of data for creating training sets before the application of machine learning. We demonstrate this using a high-content genome-wide small interfering RNA screen. We perform an unsupervised exploratory data analysis to facilitate the identification of four robust phenotypes, which we subsequently use as a training set for building a high-quality random forest machine learning model to differentiate four phenotypes with an accuracy of 91.1% and a kappa of 0.85. Our approach enhanced our ability to extract new knowledge from the screen when compared with the use of unsupervised methods alone.</description><identifier>ISSN: 2472-5552</identifier><identifier>EISSN: 2472-5560</identifier><identifier>DOI: 10.1177/2472555220919345</identifier><identifier>PMID: 32400262</identifier><language>eng</language><publisher>Los Angeles, CA: Elsevier Inc</publisher><subject>artificial intelligence ; Biochemical Research Methods ; Biochemistry &amp; Molecular Biology ; Biotechnology &amp; Applied Microbiology ; Chemistry ; Chemistry, Analytical ; classification ; Life Sciences &amp; Biomedicine ; phenotypic profiles ; Physical Sciences ; Science &amp; Technology ; supervised machine learning</subject><ispartof>SLAS discovery, 2020-07, Vol.25 (6), p.655-664, Article 2472555220919345</ispartof><rights>2020 Society for Laboratory Automation and Screening</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000534051500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c430t-74d47c42d972d86b39faef04cc5180150c9f12a5d67b5a6ec558a60a8962a3a33</citedby><cites>FETCH-LOGICAL-c430t-74d47c42d972d86b39faef04cc5180150c9f12a5d67b5a6ec558a60a8962a3a33</cites><orcidid>0000-0003-1054-6683 ; 0000-0002-9237-221X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,28255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32400262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Omta, Wienand A.</creatorcontrib><creatorcontrib>van Heesbeen, Roy G.</creatorcontrib><creatorcontrib>Shen, Ian</creatorcontrib><creatorcontrib>de Nobel, Jacob</creatorcontrib><creatorcontrib>Robers, Desmond</creatorcontrib><creatorcontrib>van der Velden, Lieke M.</creatorcontrib><creatorcontrib>Medema, René H.</creatorcontrib><creatorcontrib>Siebes, Arno P.J.M.</creatorcontrib><creatorcontrib>Feelders, Ad J.</creatorcontrib><creatorcontrib>Brinkkemper, Sjaak</creatorcontrib><creatorcontrib>Klumperman, Judith S.</creatorcontrib><creatorcontrib>Spruit, Marco René</creatorcontrib><creatorcontrib>Brinkhuis, Matthieu J.S.</creatorcontrib><creatorcontrib>Egan, David A.</creatorcontrib><title>Combining Supervised and Unsupervised Machine Learning Methods for Phenotypic Functional Genomics Screening</title><title>SLAS discovery</title><addtitle>SLAS DISCOV</addtitle><addtitle>J Biomol Screen</addtitle><description>There has been an increase in the use of machine learning and artificial intelligence (AI) for the analysis of image-based cellular screens. The accuracy of these analyses, however, is greatly dependent on the quality of the training sets used for building the machine learning models. We propose that unsupervised exploratory methods should first be applied to the data set to gain a better insight into the quality of the data. This improves the selection and labeling of data for creating training sets before the application of machine learning. We demonstrate this using a high-content genome-wide small interfering RNA screen. We perform an unsupervised exploratory data analysis to facilitate the identification of four robust phenotypes, which we subsequently use as a training set for building a high-quality random forest machine learning model to differentiate four phenotypes with an accuracy of 91.1% and a kappa of 0.85. Our approach enhanced our ability to extract new knowledge from the screen when compared with the use of unsupervised methods alone.</description><subject>artificial intelligence</subject><subject>Biochemical Research Methods</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biotechnology &amp; Applied Microbiology</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>classification</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>phenotypic profiles</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>supervised machine learning</subject><issn>2472-5552</issn><issn>2472-5560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkV1rFDEUhoNYbNn23ivJpSBj8zkf3slgq7DFQu11yCRnuqk7yZrMVPrvzTjbFQSl5CLh8LxJznMQek3Je0qr6pyJikkpGSMNbbiQL9DJXCqkLMnLw1myY3SW0j0hhFYlz-sVOuZMEMJKdoK-t2HonHf-Dt9MO4gPLoHF2lt869OfwpU2G-cBr0HH3_AVjJtgE-5DxNcb8GF83DmDLyZvRhe83uLLXBycSfjGRIA5dIqOer1NcLbfV-j24tO39nOx_nr5pf24LozgZCwqYUVlBLNNxWxddrzpNfREGCNpTagkpukp09KWVSd1CUbKWpdE103JNNecr9Db5d5dDD8mSKMaXDKw3WoPYUoqN88EYyLLWCGyoCaGlCL0ahfdoOOjokTNltXflnPkzf72qRvAHgJPTjPwbgF-Qhf6ZBx4Awcsz0FyQWTuYx5Jpuvn060b9ay3DZMfc7RYoknfgboPU8ze0_9-_mHhIct_cBDV_jnrIphR2eD-Hf4FIMm3lA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Omta, Wienand A.</creator><creator>van Heesbeen, Roy G.</creator><creator>Shen, Ian</creator><creator>de Nobel, Jacob</creator><creator>Robers, Desmond</creator><creator>van der Velden, Lieke M.</creator><creator>Medema, René H.</creator><creator>Siebes, Arno P.J.M.</creator><creator>Feelders, Ad J.</creator><creator>Brinkkemper, Sjaak</creator><creator>Klumperman, Judith S.</creator><creator>Spruit, Marco René</creator><creator>Brinkhuis, Matthieu J.S.</creator><creator>Egan, David A.</creator><general>Elsevier Inc</general><general>SAGE Publications</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1054-6683</orcidid><orcidid>https://orcid.org/0000-0002-9237-221X</orcidid></search><sort><creationdate>20200701</creationdate><title>Combining Supervised and Unsupervised Machine Learning Methods for Phenotypic Functional Genomics Screening</title><author>Omta, Wienand A. ; van Heesbeen, Roy G. ; Shen, Ian ; de Nobel, Jacob ; Robers, Desmond ; van der Velden, Lieke M. ; Medema, René H. ; Siebes, Arno P.J.M. ; Feelders, Ad J. ; Brinkkemper, Sjaak ; Klumperman, Judith S. ; Spruit, Marco René ; Brinkhuis, Matthieu J.S. ; Egan, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-74d47c42d972d86b39faef04cc5180150c9f12a5d67b5a6ec558a60a8962a3a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>artificial intelligence</topic><topic>Biochemical Research Methods</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biotechnology &amp; Applied Microbiology</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>classification</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>phenotypic profiles</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>supervised machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omta, Wienand A.</creatorcontrib><creatorcontrib>van Heesbeen, Roy G.</creatorcontrib><creatorcontrib>Shen, Ian</creatorcontrib><creatorcontrib>de Nobel, Jacob</creatorcontrib><creatorcontrib>Robers, Desmond</creatorcontrib><creatorcontrib>van der Velden, Lieke M.</creatorcontrib><creatorcontrib>Medema, René H.</creatorcontrib><creatorcontrib>Siebes, Arno P.J.M.</creatorcontrib><creatorcontrib>Feelders, Ad J.</creatorcontrib><creatorcontrib>Brinkkemper, Sjaak</creatorcontrib><creatorcontrib>Klumperman, Judith S.</creatorcontrib><creatorcontrib>Spruit, Marco René</creatorcontrib><creatorcontrib>Brinkhuis, Matthieu J.S.</creatorcontrib><creatorcontrib>Egan, David A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>SLAS discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omta, Wienand A.</au><au>van Heesbeen, Roy G.</au><au>Shen, Ian</au><au>de Nobel, Jacob</au><au>Robers, Desmond</au><au>van der Velden, Lieke M.</au><au>Medema, René H.</au><au>Siebes, Arno P.J.M.</au><au>Feelders, Ad J.</au><au>Brinkkemper, Sjaak</au><au>Klumperman, Judith S.</au><au>Spruit, Marco René</au><au>Brinkhuis, Matthieu J.S.</au><au>Egan, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Supervised and Unsupervised Machine Learning Methods for Phenotypic Functional Genomics Screening</atitle><jtitle>SLAS discovery</jtitle><stitle>SLAS DISCOV</stitle><addtitle>J Biomol Screen</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>25</volume><issue>6</issue><spage>655</spage><epage>664</epage><pages>655-664</pages><artnum>2472555220919345</artnum><issn>2472-5552</issn><eissn>2472-5560</eissn><abstract>There has been an increase in the use of machine learning and artificial intelligence (AI) for the analysis of image-based cellular screens. The accuracy of these analyses, however, is greatly dependent on the quality of the training sets used for building the machine learning models. We propose that unsupervised exploratory methods should first be applied to the data set to gain a better insight into the quality of the data. This improves the selection and labeling of data for creating training sets before the application of machine learning. We demonstrate this using a high-content genome-wide small interfering RNA screen. We perform an unsupervised exploratory data analysis to facilitate the identification of four robust phenotypes, which we subsequently use as a training set for building a high-quality random forest machine learning model to differentiate four phenotypes with an accuracy of 91.1% and a kappa of 0.85. Our approach enhanced our ability to extract new knowledge from the screen when compared with the use of unsupervised methods alone.</abstract><cop>Los Angeles, CA</cop><pub>Elsevier Inc</pub><pmid>32400262</pmid><doi>10.1177/2472555220919345</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1054-6683</orcidid><orcidid>https://orcid.org/0000-0002-9237-221X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2472-5552
ispartof SLAS discovery, 2020-07, Vol.25 (6), p.655-664, Article 2472555220919345
issn 2472-5552
2472-5560
language eng
recordid cdi_webofscience_primary_000534051500001
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects artificial intelligence
Biochemical Research Methods
Biochemistry & Molecular Biology
Biotechnology & Applied Microbiology
Chemistry
Chemistry, Analytical
classification
Life Sciences & Biomedicine
phenotypic profiles
Physical Sciences
Science & Technology
supervised machine learning
title Combining Supervised and Unsupervised Machine Learning Methods for Phenotypic Functional Genomics Screening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T02%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Supervised%20and%20Unsupervised%20Machine%20Learning%20Methods%20for%20Phenotypic%20Functional%20Genomics%20Screening&rft.jtitle=SLAS%20discovery&rft.au=Omta,%20Wienand%20A.&rft.date=2020-07-01&rft.volume=25&rft.issue=6&rft.spage=655&rft.epage=664&rft.pages=655-664&rft.artnum=2472555220919345&rft.issn=2472-5552&rft.eissn=2472-5560&rft_id=info:doi/10.1177/2472555220919345&rft_dat=%3Cproquest_webof%3E2402422436%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2402422436&rft_id=info:pmid/32400262&rft_sage_id=10.1177_2472555220919345&rft_els_id=S2472555222065741&rfr_iscdi=true