Chlorogenic acid improves lipid membrane peroxidation and morphological changes in nitrite‐induced erythrocyte model of methemoglobinemia

Nitrite salts are widely presented in food and their hazardous effects have been well documented. In this study, we evaluated the protective capacity of chlorogenic acid (CGA) against sodium nitrite (NaNO2)‐induced damage to rat erythrocytes. Two dosing regimens of CGA were undertaken to alleviate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food biochemistry 2020-05, Vol.44 (5), p.e13172-n/a, Article 13172
Hauptverfasser: Cheng, Dai, Wang, Guangliang, Wang, Xuerui, Tang, Jinlei, Li, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrite salts are widely presented in food and their hazardous effects have been well documented. In this study, we evaluated the protective capacity of chlorogenic acid (CGA) against sodium nitrite (NaNO2)‐induced damage to rat erythrocytes. Two dosing regimens of CGA were undertaken to alleviate the erythrocyte injury induced by NaNO2. We examined the cell fragility, the level of methemoglobin and oxidative stress parameters of each treated group. In result, as compared to the CGA post‐incubation, co‐incubation of CGA with NaNO2 decreased the content of advanced oxidation protein products. The protective capacity of CGA was superior to its remedial effect. We infer that the reaction of CGA and NaNO2 may suppress the cytotoxicity of nitrite on erythrocytes and avoid the generation of oxidative stress induced by NaNO2. Our results suggest a novel diet strategy for preventing the adverse effects of nitrite in those people with exposure to nitrite. Practical applications Nitrite is ubiquitous in our environment and can also be formed from nitrogenous compounds by microorganisms which exist in the soil, water, and saliva. Several researches have been performed to explore the protection of natural products on the toxic effects of Nitrite. In this study, exogenous chlorogenic acid (CGA) is able to avert the membrane damage, lipid peroxidation, and morphology in nitrite‐induced erythrocytes. The protective capacity of CGA shows superior to the remediate effect of CGA against NaNO2 caused damage to erythrocytes. These results suggest a novel diet strategy for preventing the adverse effects of NaNO2 in those people with acute exposure to nitrite. In this study, we evaluated the protective capacity of chlorogenic acid (CGA) against NaNO2 induced damage to rat erythrocytes. We infer that the reaction of CGA and NaNO2 may suppress the cytotoxicity of nitrite on erythrocytes and avoid the generation of oxidative stress induced by NaNO2. Our results suggest a novel diet strategy for preventing the adverse effects of nitrite in those people with exposure to nitrite.
ISSN:0145-8884
1745-4514
DOI:10.1111/jfbc.13172