Zwitterionic amino acids as precursors for nonmetal cation pentaborate salts

Nonmetal cation (NMC) pentaborate structures were synthesized using the amino acid molecules as cations precursors. Chemical composition analysis, infrared spectroscopy, mass analysis, boron nuclear magnetic resonance, and thermal gravimetric analysis (TGA/DTA) methods were used for structural chara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Chinese Chemical Society (Taipei) 2020-10, Vol.67 (10), p.1849-1855
Hauptverfasser: Sizir, Umit, Yurdakul, Omer, Kose, Dursun Ali, Icten, Okan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonmetal cation (NMC) pentaborate structures were synthesized using the amino acid molecules as cations precursors. Chemical composition analysis, infrared spectroscopy, mass analysis, boron nuclear magnetic resonance, and thermal gravimetric analysis (TGA/DTA) methods were used for structural characterization. The hydrogen storage efficiency of molecules was also determined experimentally. The recorded infrared spectra support the structural similarities of the molecules. Stretchings of pentaborate rings and characteristic peaks of amino acids were detected in infrared spectra. When the thermal analysis curves were recorded, it was found that the structures showed similar decomposition steps. Due to the result of thermal decay, glassy boron oxide (B2O3) formation was observed as the final decomposition products of all molecules. Peaks associated with boric acid, triborate, and pentaborate were observed in the 11B spectra of these salts. Powder X‐ray diffraction spectroscopy supports the presence of BO3 and BO4− groups regarding the presence of pentaborate rings. It also indicates the high crystallinity of the structures. The molecular cavities detected by brunauer–emmett–teller analysis were found to be 3.586, 1.922, 1.673, and 1.923 g/cm3. Low‐molecular cavities can be attributed to the high hydrogen‐bonding capacity of the structures. The hydrogen capture efficiency of the pentaborate salts was found to be in the range of 0.039‐0. When the 11B‐NMR spectra of the structures were examined, the peaks indicating the presence of triborate and pentaborate rings were determined. As non‐metal cations, amino acid derivatives provide charge equivalents of structures at the counter ion position cationically.
ISSN:0009-4536
2192-6549
DOI:10.1002/jccs.202000056