Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding

Many studies have explored the role of TSPO (18 kDa translocator protein) as a marker of neuroinflammation using single-photon emission computed tomography (SPECT) or positron emission tomography (PET). In vivo imaging does not allow to determine the cells in which TSPO is altered. We propose a meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2020-06, Vol.40 (6), p.1242-1255
Hauptverfasser: Tournier, Benjamin B, Tsartsalis, Stergios, Ceyzériat, Kelly, Medina, Zadith, Fraser, Ben H, Grégoire, Marie-Claude, Kövari, Enikö, Millet, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1255
container_issue 6
container_start_page 1242
container_title Journal of cerebral blood flow and metabolism
container_volume 40
creator Tournier, Benjamin B
Tsartsalis, Stergios
Ceyzériat, Kelly
Medina, Zadith
Fraser, Ben H
Grégoire, Marie-Claude
Kövari, Enikö
Millet, Philippe
description Many studies have explored the role of TSPO (18 kDa translocator protein) as a marker of neuroinflammation using single-photon emission computed tomography (SPECT) or positron emission tomography (PET). In vivo imaging does not allow to determine the cells in which TSPO is altered. We propose a methodology based on fluorescence-activated cell sorting to sort different cell types of radioligand-treated tissues. We compared left/right hippocampus of rats in response to a unilateral injection of lipopolysaccharide (LPS), ciliary neurotrophic factor (CNTF) or saline. We finally applied this methodology in human samples (Alzheimer's disease patients and controls). Our data show that the pattern of TSPO overexpression differs across animal models of acute neuroinflammation. LPS induces a microglial expansion and an increase in microglial TSPO binding. CNTF is associated with an increase in TSPO binding in microglia and astrocytes in association with an increase in the number of microglial binding sites per cell. In humans, we show that the increase in CLINDE binding in Alzheimer's disease concerns microglia and astrocytes in the presence of a microglial expansion. Thus, the cellular basis of TSPO overexpression is condition dependent, and alterations in TSPO binding found in PET/SPECT imaging studies cannot be attributed to particular cell types indiscriminately.
doi_str_mv 10.1177/0271678X19860408
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7238369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X19860408</sage_id><sourcerecordid>2248382931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-89c11c7b6cf571855507bfa6252ee20239a4e3ff38d6101bcaa9544a36df8c183</originalsourceid><addsrcrecordid>eNp1Uc9LwzAUDqK4Ob17kh69VPOjadKLIMOpMPAywVtI09cuo2tm0g78723pFBU8vcP3473vewhdEnxDiBC3mAqSCvlGMpniBMsjNCWcZ7HAJD1G0wGOB3yCzkLYYIwl4_wUTRihCcWJnKLVou6ch2CgMRBr09q9bqGIDNR1FJxvbVNFrYs87EHXUbuGEXLeVraJXBl5XVhX20o3RZTbpugF5-ik1HWAi8OcodfFw2r-FC9fHp_n98vY8ES0scwMIUbkqSm5IJJzjkVe6pRyCkAxZZlOgJUlk0VKMMmN1hlPEs3SopSGSDZDd6Pvrsu3UPQZWq9rtfN2q_2Hctqq30hj16pyeyUokyzNeoPrg4F37x2EVm1tGPLpBlwXFKWJZJJmjPRUPFKNdyF4KL_XEKyGZ6i_z-glVz_P-xZ8td8T4pEQdAVq4zrf9HX9b_gJWeeTZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248382931</pqid></control><display><type>article</type><title>Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding</title><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>SAGE Journals Online</source><source>EZB Electronic Journals Library</source><creator>Tournier, Benjamin B ; Tsartsalis, Stergios ; Ceyzériat, Kelly ; Medina, Zadith ; Fraser, Ben H ; Grégoire, Marie-Claude ; Kövari, Enikö ; Millet, Philippe</creator><creatorcontrib>Tournier, Benjamin B ; Tsartsalis, Stergios ; Ceyzériat, Kelly ; Medina, Zadith ; Fraser, Ben H ; Grégoire, Marie-Claude ; Kövari, Enikö ; Millet, Philippe</creatorcontrib><description>Many studies have explored the role of TSPO (18 kDa translocator protein) as a marker of neuroinflammation using single-photon emission computed tomography (SPECT) or positron emission tomography (PET). In vivo imaging does not allow to determine the cells in which TSPO is altered. We propose a methodology based on fluorescence-activated cell sorting to sort different cell types of radioligand-treated tissues. We compared left/right hippocampus of rats in response to a unilateral injection of lipopolysaccharide (LPS), ciliary neurotrophic factor (CNTF) or saline. We finally applied this methodology in human samples (Alzheimer's disease patients and controls). Our data show that the pattern of TSPO overexpression differs across animal models of acute neuroinflammation. LPS induces a microglial expansion and an increase in microglial TSPO binding. CNTF is associated with an increase in TSPO binding in microglia and astrocytes in association with an increase in the number of microglial binding sites per cell. In humans, we show that the increase in CLINDE binding in Alzheimer's disease concerns microglia and astrocytes in the presence of a microglial expansion. Thus, the cellular basis of TSPO overexpression is condition dependent, and alterations in TSPO binding found in PET/SPECT imaging studies cannot be attributed to particular cell types indiscriminately.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X19860408</identifier><identifier>PMID: 31242048</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aged, 80 and over ; Alzheimer Disease - metabolism ; Animals ; Astrocytes - metabolism ; Bridged Bicyclo Compounds, Heterocyclic ; Carrier Proteins - metabolism ; Female ; Flow Cytometry - methods ; Humans ; Inflammation - metabolism ; Male ; Microglia - metabolism ; Original ; Radiopharmaceuticals ; Rats ; Rats, Inbred F344 ; Rats, Sprague-Dawley ; Receptors, GABA - metabolism ; Receptors, GABA-A - metabolism ; Tomography, Emission-Computed, Single-Photon</subject><ispartof>Journal of cerebral blood flow and metabolism, 2020-06, Vol.40 (6), p.1242-1255</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019 2019 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-89c11c7b6cf571855507bfa6252ee20239a4e3ff38d6101bcaa9544a36df8c183</citedby><cites>FETCH-LOGICAL-c547t-89c11c7b6cf571855507bfa6252ee20239a4e3ff38d6101bcaa9544a36df8c183</cites><orcidid>0000-0002-7304-7403 ; 0000-0002-8027-7530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238369/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238369/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,21821,27926,27927,43623,43624,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31242048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tournier, Benjamin B</creatorcontrib><creatorcontrib>Tsartsalis, Stergios</creatorcontrib><creatorcontrib>Ceyzériat, Kelly</creatorcontrib><creatorcontrib>Medina, Zadith</creatorcontrib><creatorcontrib>Fraser, Ben H</creatorcontrib><creatorcontrib>Grégoire, Marie-Claude</creatorcontrib><creatorcontrib>Kövari, Enikö</creatorcontrib><creatorcontrib>Millet, Philippe</creatorcontrib><title>Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Many studies have explored the role of TSPO (18 kDa translocator protein) as a marker of neuroinflammation using single-photon emission computed tomography (SPECT) or positron emission tomography (PET). In vivo imaging does not allow to determine the cells in which TSPO is altered. We propose a methodology based on fluorescence-activated cell sorting to sort different cell types of radioligand-treated tissues. We compared left/right hippocampus of rats in response to a unilateral injection of lipopolysaccharide (LPS), ciliary neurotrophic factor (CNTF) or saline. We finally applied this methodology in human samples (Alzheimer's disease patients and controls). Our data show that the pattern of TSPO overexpression differs across animal models of acute neuroinflammation. LPS induces a microglial expansion and an increase in microglial TSPO binding. CNTF is associated with an increase in TSPO binding in microglia and astrocytes in association with an increase in the number of microglial binding sites per cell. In humans, we show that the increase in CLINDE binding in Alzheimer's disease concerns microglia and astrocytes in the presence of a microglial expansion. Thus, the cellular basis of TSPO overexpression is condition dependent, and alterations in TSPO binding found in PET/SPECT imaging studies cannot be attributed to particular cell types indiscriminately.</description><subject>Aged, 80 and over</subject><subject>Alzheimer Disease - metabolism</subject><subject>Animals</subject><subject>Astrocytes - metabolism</subject><subject>Bridged Bicyclo Compounds, Heterocyclic</subject><subject>Carrier Proteins - metabolism</subject><subject>Female</subject><subject>Flow Cytometry - methods</subject><subject>Humans</subject><subject>Inflammation - metabolism</subject><subject>Male</subject><subject>Microglia - metabolism</subject><subject>Original</subject><subject>Radiopharmaceuticals</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, GABA - metabolism</subject><subject>Receptors, GABA-A - metabolism</subject><subject>Tomography, Emission-Computed, Single-Photon</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1Uc9LwzAUDqK4Ob17kh69VPOjadKLIMOpMPAywVtI09cuo2tm0g78723pFBU8vcP3473vewhdEnxDiBC3mAqSCvlGMpniBMsjNCWcZ7HAJD1G0wGOB3yCzkLYYIwl4_wUTRihCcWJnKLVou6ch2CgMRBr09q9bqGIDNR1FJxvbVNFrYs87EHXUbuGEXLeVraJXBl5XVhX20o3RZTbpugF5-ik1HWAi8OcodfFw2r-FC9fHp_n98vY8ES0scwMIUbkqSm5IJJzjkVe6pRyCkAxZZlOgJUlk0VKMMmN1hlPEs3SopSGSDZDd6Pvrsu3UPQZWq9rtfN2q_2Hctqq30hj16pyeyUokyzNeoPrg4F37x2EVm1tGPLpBlwXFKWJZJJmjPRUPFKNdyF4KL_XEKyGZ6i_z-glVz_P-xZ8td8T4pEQdAVq4zrf9HX9b_gJWeeTZg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Tournier, Benjamin B</creator><creator>Tsartsalis, Stergios</creator><creator>Ceyzériat, Kelly</creator><creator>Medina, Zadith</creator><creator>Fraser, Ben H</creator><creator>Grégoire, Marie-Claude</creator><creator>Kövari, Enikö</creator><creator>Millet, Philippe</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7304-7403</orcidid><orcidid>https://orcid.org/0000-0002-8027-7530</orcidid></search><sort><creationdate>20200601</creationdate><title>Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding</title><author>Tournier, Benjamin B ; Tsartsalis, Stergios ; Ceyzériat, Kelly ; Medina, Zadith ; Fraser, Ben H ; Grégoire, Marie-Claude ; Kövari, Enikö ; Millet, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-89c11c7b6cf571855507bfa6252ee20239a4e3ff38d6101bcaa9544a36df8c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged, 80 and over</topic><topic>Alzheimer Disease - metabolism</topic><topic>Animals</topic><topic>Astrocytes - metabolism</topic><topic>Bridged Bicyclo Compounds, Heterocyclic</topic><topic>Carrier Proteins - metabolism</topic><topic>Female</topic><topic>Flow Cytometry - methods</topic><topic>Humans</topic><topic>Inflammation - metabolism</topic><topic>Male</topic><topic>Microglia - metabolism</topic><topic>Original</topic><topic>Radiopharmaceuticals</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, GABA - metabolism</topic><topic>Receptors, GABA-A - metabolism</topic><topic>Tomography, Emission-Computed, Single-Photon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tournier, Benjamin B</creatorcontrib><creatorcontrib>Tsartsalis, Stergios</creatorcontrib><creatorcontrib>Ceyzériat, Kelly</creatorcontrib><creatorcontrib>Medina, Zadith</creatorcontrib><creatorcontrib>Fraser, Ben H</creatorcontrib><creatorcontrib>Grégoire, Marie-Claude</creatorcontrib><creatorcontrib>Kövari, Enikö</creatorcontrib><creatorcontrib>Millet, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tournier, Benjamin B</au><au>Tsartsalis, Stergios</au><au>Ceyzériat, Kelly</au><au>Medina, Zadith</au><au>Fraser, Ben H</au><au>Grégoire, Marie-Claude</au><au>Kövari, Enikö</au><au>Millet, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>40</volume><issue>6</issue><spage>1242</spage><epage>1255</epage><pages>1242-1255</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Many studies have explored the role of TSPO (18 kDa translocator protein) as a marker of neuroinflammation using single-photon emission computed tomography (SPECT) or positron emission tomography (PET). In vivo imaging does not allow to determine the cells in which TSPO is altered. We propose a methodology based on fluorescence-activated cell sorting to sort different cell types of radioligand-treated tissues. We compared left/right hippocampus of rats in response to a unilateral injection of lipopolysaccharide (LPS), ciliary neurotrophic factor (CNTF) or saline. We finally applied this methodology in human samples (Alzheimer's disease patients and controls). Our data show that the pattern of TSPO overexpression differs across animal models of acute neuroinflammation. LPS induces a microglial expansion and an increase in microglial TSPO binding. CNTF is associated with an increase in TSPO binding in microglia and astrocytes in association with an increase in the number of microglial binding sites per cell. In humans, we show that the increase in CLINDE binding in Alzheimer's disease concerns microglia and astrocytes in the presence of a microglial expansion. Thus, the cellular basis of TSPO overexpression is condition dependent, and alterations in TSPO binding found in PET/SPECT imaging studies cannot be attributed to particular cell types indiscriminately.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>31242048</pmid><doi>10.1177/0271678X19860408</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7304-7403</orcidid><orcidid>https://orcid.org/0000-0002-8027-7530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2020-06, Vol.40 (6), p.1242-1255
issn 0271-678X
1559-7016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7238369
source Open Access: PubMed Central; MEDLINE; SAGE Journals Online; EZB Electronic Journals Library
subjects Aged, 80 and over
Alzheimer Disease - metabolism
Animals
Astrocytes - metabolism
Bridged Bicyclo Compounds, Heterocyclic
Carrier Proteins - metabolism
Female
Flow Cytometry - methods
Humans
Inflammation - metabolism
Male
Microglia - metabolism
Original
Radiopharmaceuticals
Rats
Rats, Inbred F344
Rats, Sprague-Dawley
Receptors, GABA - metabolism
Receptors, GABA-A - metabolism
Tomography, Emission-Computed, Single-Photon
title Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence-activated%20cell%20sorting%20to%20reveal%20the%20cell%20origin%20of%20radioligand%20binding&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Tournier,%20Benjamin%20B&rft.date=2020-06-01&rft.volume=40&rft.issue=6&rft.spage=1242&rft.epage=1255&rft.pages=1242-1255&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X19860408&rft_dat=%3Cproquest_pubme%3E2248382931%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248382931&rft_id=info:pmid/31242048&rft_sage_id=10.1177_0271678X19860408&rfr_iscdi=true