Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding
Many studies have explored the role of TSPO (18 kDa translocator protein) as a marker of neuroinflammation using single-photon emission computed tomography (SPECT) or positron emission tomography (PET). In vivo imaging does not allow to determine the cells in which TSPO is altered. We propose a meth...
Gespeichert in:
Veröffentlicht in: | Journal of cerebral blood flow and metabolism 2020-06, Vol.40 (6), p.1242-1255 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1255 |
---|---|
container_issue | 6 |
container_start_page | 1242 |
container_title | Journal of cerebral blood flow and metabolism |
container_volume | 40 |
creator | Tournier, Benjamin B Tsartsalis, Stergios Ceyzériat, Kelly Medina, Zadith Fraser, Ben H Grégoire, Marie-Claude Kövari, Enikö Millet, Philippe |
description | Many studies have explored the role of TSPO (18 kDa translocator protein) as a marker of neuroinflammation using single-photon emission computed tomography (SPECT) or positron emission tomography (PET). In vivo imaging does not allow to determine the cells in which TSPO is altered. We propose a methodology based on fluorescence-activated cell sorting to sort different cell types of radioligand-treated tissues. We compared left/right hippocampus of rats in response to a unilateral injection of lipopolysaccharide (LPS), ciliary neurotrophic factor (CNTF) or saline. We finally applied this methodology in human samples (Alzheimer's disease patients and controls). Our data show that the pattern of TSPO overexpression differs across animal models of acute neuroinflammation. LPS induces a microglial expansion and an increase in microglial TSPO binding. CNTF is associated with an increase in TSPO binding in microglia and astrocytes in association with an increase in the number of microglial binding sites per cell. In humans, we show that the increase in CLINDE binding in Alzheimer's disease concerns microglia and astrocytes in the presence of a microglial expansion. Thus, the cellular basis of TSPO overexpression is condition dependent, and alterations in TSPO binding found in PET/SPECT imaging studies cannot be attributed to particular cell types indiscriminately. |
doi_str_mv | 10.1177/0271678X19860408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7238369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X19860408</sage_id><sourcerecordid>2248382931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-89c11c7b6cf571855507bfa6252ee20239a4e3ff38d6101bcaa9544a36df8c183</originalsourceid><addsrcrecordid>eNp1Uc9LwzAUDqK4Ob17kh69VPOjadKLIMOpMPAywVtI09cuo2tm0g78723pFBU8vcP3473vewhdEnxDiBC3mAqSCvlGMpniBMsjNCWcZ7HAJD1G0wGOB3yCzkLYYIwl4_wUTRihCcWJnKLVou6ch2CgMRBr09q9bqGIDNR1FJxvbVNFrYs87EHXUbuGEXLeVraJXBl5XVhX20o3RZTbpugF5-ik1HWAi8OcodfFw2r-FC9fHp_n98vY8ES0scwMIUbkqSm5IJJzjkVe6pRyCkAxZZlOgJUlk0VKMMmN1hlPEs3SopSGSDZDd6Pvrsu3UPQZWq9rtfN2q_2Hctqq30hj16pyeyUokyzNeoPrg4F37x2EVm1tGPLpBlwXFKWJZJJmjPRUPFKNdyF4KL_XEKyGZ6i_z-glVz_P-xZ8td8T4pEQdAVq4zrf9HX9b_gJWeeTZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248382931</pqid></control><display><type>article</type><title>Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding</title><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>SAGE Journals Online</source><source>EZB Electronic Journals Library</source><creator>Tournier, Benjamin B ; Tsartsalis, Stergios ; Ceyzériat, Kelly ; Medina, Zadith ; Fraser, Ben H ; Grégoire, Marie-Claude ; Kövari, Enikö ; Millet, Philippe</creator><creatorcontrib>Tournier, Benjamin B ; Tsartsalis, Stergios ; Ceyzériat, Kelly ; Medina, Zadith ; Fraser, Ben H ; Grégoire, Marie-Claude ; Kövari, Enikö ; Millet, Philippe</creatorcontrib><description>Many studies have explored the role of TSPO (18 kDa translocator protein) as a marker of neuroinflammation using single-photon emission computed tomography (SPECT) or positron emission tomography (PET). In vivo imaging does not allow to determine the cells in which TSPO is altered. We propose a methodology based on fluorescence-activated cell sorting to sort different cell types of radioligand-treated tissues. We compared left/right hippocampus of rats in response to a unilateral injection of lipopolysaccharide (LPS), ciliary neurotrophic factor (CNTF) or saline. We finally applied this methodology in human samples (Alzheimer's disease patients and controls). Our data show that the pattern of TSPO overexpression differs across animal models of acute neuroinflammation. LPS induces a microglial expansion and an increase in microglial TSPO binding. CNTF is associated with an increase in TSPO binding in microglia and astrocytes in association with an increase in the number of microglial binding sites per cell. In humans, we show that the increase in CLINDE binding in Alzheimer's disease concerns microglia and astrocytes in the presence of a microglial expansion. Thus, the cellular basis of TSPO overexpression is condition dependent, and alterations in TSPO binding found in PET/SPECT imaging studies cannot be attributed to particular cell types indiscriminately.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X19860408</identifier><identifier>PMID: 31242048</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aged, 80 and over ; Alzheimer Disease - metabolism ; Animals ; Astrocytes - metabolism ; Bridged Bicyclo Compounds, Heterocyclic ; Carrier Proteins - metabolism ; Female ; Flow Cytometry - methods ; Humans ; Inflammation - metabolism ; Male ; Microglia - metabolism ; Original ; Radiopharmaceuticals ; Rats ; Rats, Inbred F344 ; Rats, Sprague-Dawley ; Receptors, GABA - metabolism ; Receptors, GABA-A - metabolism ; Tomography, Emission-Computed, Single-Photon</subject><ispartof>Journal of cerebral blood flow and metabolism, 2020-06, Vol.40 (6), p.1242-1255</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019 2019 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-89c11c7b6cf571855507bfa6252ee20239a4e3ff38d6101bcaa9544a36df8c183</citedby><cites>FETCH-LOGICAL-c547t-89c11c7b6cf571855507bfa6252ee20239a4e3ff38d6101bcaa9544a36df8c183</cites><orcidid>0000-0002-7304-7403 ; 0000-0002-8027-7530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238369/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238369/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,21821,27926,27927,43623,43624,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31242048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tournier, Benjamin B</creatorcontrib><creatorcontrib>Tsartsalis, Stergios</creatorcontrib><creatorcontrib>Ceyzériat, Kelly</creatorcontrib><creatorcontrib>Medina, Zadith</creatorcontrib><creatorcontrib>Fraser, Ben H</creatorcontrib><creatorcontrib>Grégoire, Marie-Claude</creatorcontrib><creatorcontrib>Kövari, Enikö</creatorcontrib><creatorcontrib>Millet, Philippe</creatorcontrib><title>Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Many studies have explored the role of TSPO (18 kDa translocator protein) as a marker of neuroinflammation using single-photon emission computed tomography (SPECT) or positron emission tomography (PET). In vivo imaging does not allow to determine the cells in which TSPO is altered. We propose a methodology based on fluorescence-activated cell sorting to sort different cell types of radioligand-treated tissues. We compared left/right hippocampus of rats in response to a unilateral injection of lipopolysaccharide (LPS), ciliary neurotrophic factor (CNTF) or saline. We finally applied this methodology in human samples (Alzheimer's disease patients and controls). Our data show that the pattern of TSPO overexpression differs across animal models of acute neuroinflammation. LPS induces a microglial expansion and an increase in microglial TSPO binding. CNTF is associated with an increase in TSPO binding in microglia and astrocytes in association with an increase in the number of microglial binding sites per cell. In humans, we show that the increase in CLINDE binding in Alzheimer's disease concerns microglia and astrocytes in the presence of a microglial expansion. Thus, the cellular basis of TSPO overexpression is condition dependent, and alterations in TSPO binding found in PET/SPECT imaging studies cannot be attributed to particular cell types indiscriminately.</description><subject>Aged, 80 and over</subject><subject>Alzheimer Disease - metabolism</subject><subject>Animals</subject><subject>Astrocytes - metabolism</subject><subject>Bridged Bicyclo Compounds, Heterocyclic</subject><subject>Carrier Proteins - metabolism</subject><subject>Female</subject><subject>Flow Cytometry - methods</subject><subject>Humans</subject><subject>Inflammation - metabolism</subject><subject>Male</subject><subject>Microglia - metabolism</subject><subject>Original</subject><subject>Radiopharmaceuticals</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, GABA - metabolism</subject><subject>Receptors, GABA-A - metabolism</subject><subject>Tomography, Emission-Computed, Single-Photon</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1Uc9LwzAUDqK4Ob17kh69VPOjadKLIMOpMPAywVtI09cuo2tm0g78723pFBU8vcP3473vewhdEnxDiBC3mAqSCvlGMpniBMsjNCWcZ7HAJD1G0wGOB3yCzkLYYIwl4_wUTRihCcWJnKLVou6ch2CgMRBr09q9bqGIDNR1FJxvbVNFrYs87EHXUbuGEXLeVraJXBl5XVhX20o3RZTbpugF5-ik1HWAi8OcodfFw2r-FC9fHp_n98vY8ES0scwMIUbkqSm5IJJzjkVe6pRyCkAxZZlOgJUlk0VKMMmN1hlPEs3SopSGSDZDd6Pvrsu3UPQZWq9rtfN2q_2Hctqq30hj16pyeyUokyzNeoPrg4F37x2EVm1tGPLpBlwXFKWJZJJmjPRUPFKNdyF4KL_XEKyGZ6i_z-glVz_P-xZ8td8T4pEQdAVq4zrf9HX9b_gJWeeTZg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Tournier, Benjamin B</creator><creator>Tsartsalis, Stergios</creator><creator>Ceyzériat, Kelly</creator><creator>Medina, Zadith</creator><creator>Fraser, Ben H</creator><creator>Grégoire, Marie-Claude</creator><creator>Kövari, Enikö</creator><creator>Millet, Philippe</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7304-7403</orcidid><orcidid>https://orcid.org/0000-0002-8027-7530</orcidid></search><sort><creationdate>20200601</creationdate><title>Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding</title><author>Tournier, Benjamin B ; Tsartsalis, Stergios ; Ceyzériat, Kelly ; Medina, Zadith ; Fraser, Ben H ; Grégoire, Marie-Claude ; Kövari, Enikö ; Millet, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-89c11c7b6cf571855507bfa6252ee20239a4e3ff38d6101bcaa9544a36df8c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged, 80 and over</topic><topic>Alzheimer Disease - metabolism</topic><topic>Animals</topic><topic>Astrocytes - metabolism</topic><topic>Bridged Bicyclo Compounds, Heterocyclic</topic><topic>Carrier Proteins - metabolism</topic><topic>Female</topic><topic>Flow Cytometry - methods</topic><topic>Humans</topic><topic>Inflammation - metabolism</topic><topic>Male</topic><topic>Microglia - metabolism</topic><topic>Original</topic><topic>Radiopharmaceuticals</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, GABA - metabolism</topic><topic>Receptors, GABA-A - metabolism</topic><topic>Tomography, Emission-Computed, Single-Photon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tournier, Benjamin B</creatorcontrib><creatorcontrib>Tsartsalis, Stergios</creatorcontrib><creatorcontrib>Ceyzériat, Kelly</creatorcontrib><creatorcontrib>Medina, Zadith</creatorcontrib><creatorcontrib>Fraser, Ben H</creatorcontrib><creatorcontrib>Grégoire, Marie-Claude</creatorcontrib><creatorcontrib>Kövari, Enikö</creatorcontrib><creatorcontrib>Millet, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tournier, Benjamin B</au><au>Tsartsalis, Stergios</au><au>Ceyzériat, Kelly</au><au>Medina, Zadith</au><au>Fraser, Ben H</au><au>Grégoire, Marie-Claude</au><au>Kövari, Enikö</au><au>Millet, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>40</volume><issue>6</issue><spage>1242</spage><epage>1255</epage><pages>1242-1255</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Many studies have explored the role of TSPO (18 kDa translocator protein) as a marker of neuroinflammation using single-photon emission computed tomography (SPECT) or positron emission tomography (PET). In vivo imaging does not allow to determine the cells in which TSPO is altered. We propose a methodology based on fluorescence-activated cell sorting to sort different cell types of radioligand-treated tissues. We compared left/right hippocampus of rats in response to a unilateral injection of lipopolysaccharide (LPS), ciliary neurotrophic factor (CNTF) or saline. We finally applied this methodology in human samples (Alzheimer's disease patients and controls). Our data show that the pattern of TSPO overexpression differs across animal models of acute neuroinflammation. LPS induces a microglial expansion and an increase in microglial TSPO binding. CNTF is associated with an increase in TSPO binding in microglia and astrocytes in association with an increase in the number of microglial binding sites per cell. In humans, we show that the increase in CLINDE binding in Alzheimer's disease concerns microglia and astrocytes in the presence of a microglial expansion. Thus, the cellular basis of TSPO overexpression is condition dependent, and alterations in TSPO binding found in PET/SPECT imaging studies cannot be attributed to particular cell types indiscriminately.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>31242048</pmid><doi>10.1177/0271678X19860408</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7304-7403</orcidid><orcidid>https://orcid.org/0000-0002-8027-7530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-678X |
ispartof | Journal of cerebral blood flow and metabolism, 2020-06, Vol.40 (6), p.1242-1255 |
issn | 0271-678X 1559-7016 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7238369 |
source | Open Access: PubMed Central; MEDLINE; SAGE Journals Online; EZB Electronic Journals Library |
subjects | Aged, 80 and over Alzheimer Disease - metabolism Animals Astrocytes - metabolism Bridged Bicyclo Compounds, Heterocyclic Carrier Proteins - metabolism Female Flow Cytometry - methods Humans Inflammation - metabolism Male Microglia - metabolism Original Radiopharmaceuticals Rats Rats, Inbred F344 Rats, Sprague-Dawley Receptors, GABA - metabolism Receptors, GABA-A - metabolism Tomography, Emission-Computed, Single-Photon |
title | Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence-activated%20cell%20sorting%20to%20reveal%20the%20cell%20origin%20of%20radioligand%20binding&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Tournier,%20Benjamin%20B&rft.date=2020-06-01&rft.volume=40&rft.issue=6&rft.spage=1242&rft.epage=1255&rft.pages=1242-1255&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X19860408&rft_dat=%3Cproquest_pubme%3E2248382931%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248382931&rft_id=info:pmid/31242048&rft_sage_id=10.1177_0271678X19860408&rfr_iscdi=true |