Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique
In this work, the effect of short carbon fibre (CF) on the mechanical and geometric properties of 3D printed polylactic acid (PLA) composite parts processed using the Fused Filament Fabrication (FFF) technique have been analysed. Tensile, flexural and interlaminar shear strength (ILSS) tests were pe...
Gespeichert in:
Veröffentlicht in: | Materials 2020-04, Vol.13 (8), p.1924 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1924 |
container_title | Materials |
container_volume | 13 |
creator | Reverte, José María Caminero, Miguel Ángel Chacón, Jesús Miguel García-Plaza, Eustaquio Núñez, Pedro José Becar, Jean Paul |
description | In this work, the effect of short carbon fibre (CF) on the mechanical and geometric properties of 3D printed polylactic acid (PLA) composite parts processed using the Fused Filament Fabrication (FFF) technique have been analysed. Tensile, flexural and interlaminar shear strength (ILSS) tests were performed to obtain the mechanical performance of the different samples. The surface quality and geometric accuracy of the printed specimens were also evaluated. Finally, Scanning Electron Microscope (SEM) images of the printed samples are analysed. The results revealed that the addition of carbon fibres effectively improved all assessed mechanical properties of PLA-CF composites as compared to the neat PLA. In particular, Flat PLA-CF samples showed an average increase in tensile performance of 47.1% for the tensile strength and 179.9% for the tensile stiffness in comparison to the neat PLA. From the flexural behaviour point of view, Flat PLA-CF samples revealed an increase in average flexural strength and stiffness of 89.75% and 230.95%, respectively in comparison to the neat PLA. Furthermore, PLA-CF samples depicted the best ILSS performance. In general, the use of short carbon fibre as reinforcement did not affect the dimensional accuracy of the PLA-CF samples, and even improved the surface roughness in certain cases, particularly in Flat and On-edge orientations. |
doi_str_mv | 10.3390/MA13081924 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7215744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394907052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-21a8541117eb1be126dd287eed70aefd3d17d154fad0377e4af5a8e0c03a7ed03</originalsourceid><addsrcrecordid>eNpdkd2KFDEQhRtR3GXdGx9AAt6I0Jq_3nTfCLODswozOBfrdahOqneydCdjkl6Yx_CNzbg_rNZNVaU-DiecqnrL6CchOvp5s2CCtqzj8kV1yrruomadlC-fzSfVeUq3tJQQrOXd6-pEcMGbljen1e8Nmh14Z2Ak4C25wjBhjs6QLcYhxAm8QRIGsl0v6ktIaMk2jIcJI1mGaR-Sy5jINgaD6XjsDyTvkKzm47JyI0zoM1lBXyQhu-DJwlqX3R2SDfh5AJPn6PwNuS4-vPs145vq1QBjwvOHflb9XH29Xn6r1z-uvi8X69pIqXLNGbSNZIwp7FmPjF9Yy1uFaBUFHKywTFnWyAEsFUqhhKGBFqmhAhSWt7Pqy73ufu4ntKb4jDDqfXQTxIMO4PS_F-92-ibcacVZo6QsAh8eBGIovlPWk0sGxxE8hjlpLjrZUUUbXtD3_6G3YY6-fO8vVYqztlAf7ykTQ0oRhyczjOpj2HqCx7AL_O65_Sf0MVrxBy5Wpv4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394444218</pqid></control><display><type>article</type><title>Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Reverte, José María ; Caminero, Miguel Ángel ; Chacón, Jesús Miguel ; García-Plaza, Eustaquio ; Núñez, Pedro José ; Becar, Jean Paul</creator><creatorcontrib>Reverte, José María ; Caminero, Miguel Ángel ; Chacón, Jesús Miguel ; García-Plaza, Eustaquio ; Núñez, Pedro José ; Becar, Jean Paul</creatorcontrib><description>In this work, the effect of short carbon fibre (CF) on the mechanical and geometric properties of 3D printed polylactic acid (PLA) composite parts processed using the Fused Filament Fabrication (FFF) technique have been analysed. Tensile, flexural and interlaminar shear strength (ILSS) tests were performed to obtain the mechanical performance of the different samples. The surface quality and geometric accuracy of the printed specimens were also evaluated. Finally, Scanning Electron Microscope (SEM) images of the printed samples are analysed. The results revealed that the addition of carbon fibres effectively improved all assessed mechanical properties of PLA-CF composites as compared to the neat PLA. In particular, Flat PLA-CF samples showed an average increase in tensile performance of 47.1% for the tensile strength and 179.9% for the tensile stiffness in comparison to the neat PLA. From the flexural behaviour point of view, Flat PLA-CF samples revealed an increase in average flexural strength and stiffness of 89.75% and 230.95%, respectively in comparison to the neat PLA. Furthermore, PLA-CF samples depicted the best ILSS performance. In general, the use of short carbon fibre as reinforcement did not affect the dimensional accuracy of the PLA-CF samples, and even improved the surface roughness in certain cases, particularly in Flat and On-edge orientations.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/MA13081924</identifier><identifier>PMID: 32325825</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; Accuracy ; Additive manufacturing ; Carbon fiber reinforcement ; Carbon fibers ; Composite materials ; Flexural strength ; Fused deposition modeling ; Geometric accuracy ; Interfacial shear strength ; Mechanical properties ; Polylactic acid ; Polymer matrix composites ; Polymers ; Quality ; Software ; Stiffness ; Studies ; Surface properties ; Surface roughness ; Tensile strength ; Three dimensional printing</subject><ispartof>Materials, 2020-04, Vol.13 (8), p.1924</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-21a8541117eb1be126dd287eed70aefd3d17d154fad0377e4af5a8e0c03a7ed03</citedby><cites>FETCH-LOGICAL-c447t-21a8541117eb1be126dd287eed70aefd3d17d154fad0377e4af5a8e0c03a7ed03</cites><orcidid>0000-0001-8709-3673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215744/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215744/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32325825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reverte, José María</creatorcontrib><creatorcontrib>Caminero, Miguel Ángel</creatorcontrib><creatorcontrib>Chacón, Jesús Miguel</creatorcontrib><creatorcontrib>García-Plaza, Eustaquio</creatorcontrib><creatorcontrib>Núñez, Pedro José</creatorcontrib><creatorcontrib>Becar, Jean Paul</creatorcontrib><title>Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In this work, the effect of short carbon fibre (CF) on the mechanical and geometric properties of 3D printed polylactic acid (PLA) composite parts processed using the Fused Filament Fabrication (FFF) technique have been analysed. Tensile, flexural and interlaminar shear strength (ILSS) tests were performed to obtain the mechanical performance of the different samples. The surface quality and geometric accuracy of the printed specimens were also evaluated. Finally, Scanning Electron Microscope (SEM) images of the printed samples are analysed. The results revealed that the addition of carbon fibres effectively improved all assessed mechanical properties of PLA-CF composites as compared to the neat PLA. In particular, Flat PLA-CF samples showed an average increase in tensile performance of 47.1% for the tensile strength and 179.9% for the tensile stiffness in comparison to the neat PLA. From the flexural behaviour point of view, Flat PLA-CF samples revealed an increase in average flexural strength and stiffness of 89.75% and 230.95%, respectively in comparison to the neat PLA. Furthermore, PLA-CF samples depicted the best ILSS performance. In general, the use of short carbon fibre as reinforcement did not affect the dimensional accuracy of the PLA-CF samples, and even improved the surface roughness in certain cases, particularly in Flat and On-edge orientations.</description><subject>3-D printers</subject><subject>Accuracy</subject><subject>Additive manufacturing</subject><subject>Carbon fiber reinforcement</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Flexural strength</subject><subject>Fused deposition modeling</subject><subject>Geometric accuracy</subject><subject>Interfacial shear strength</subject><subject>Mechanical properties</subject><subject>Polylactic acid</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Quality</subject><subject>Software</subject><subject>Stiffness</subject><subject>Studies</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>Tensile strength</subject><subject>Three dimensional printing</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd2KFDEQhRtR3GXdGx9AAt6I0Jq_3nTfCLODswozOBfrdahOqneydCdjkl6Yx_CNzbg_rNZNVaU-DiecqnrL6CchOvp5s2CCtqzj8kV1yrruomadlC-fzSfVeUq3tJQQrOXd6-pEcMGbljen1e8Nmh14Z2Ak4C25wjBhjs6QLcYhxAm8QRIGsl0v6ktIaMk2jIcJI1mGaR-Sy5jINgaD6XjsDyTvkKzm47JyI0zoM1lBXyQhu-DJwlqX3R2SDfh5AJPn6PwNuS4-vPs145vq1QBjwvOHflb9XH29Xn6r1z-uvi8X69pIqXLNGbSNZIwp7FmPjF9Yy1uFaBUFHKywTFnWyAEsFUqhhKGBFqmhAhSWt7Pqy73ufu4ntKb4jDDqfXQTxIMO4PS_F-92-ibcacVZo6QsAh8eBGIovlPWk0sGxxE8hjlpLjrZUUUbXtD3_6G3YY6-fO8vVYqztlAf7ykTQ0oRhyczjOpj2HqCx7AL_O65_Sf0MVrxBy5Wpv4</recordid><startdate>20200419</startdate><enddate>20200419</enddate><creator>Reverte, José María</creator><creator>Caminero, Miguel Ángel</creator><creator>Chacón, Jesús Miguel</creator><creator>García-Plaza, Eustaquio</creator><creator>Núñez, Pedro José</creator><creator>Becar, Jean Paul</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8709-3673</orcidid></search><sort><creationdate>20200419</creationdate><title>Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique</title><author>Reverte, José María ; Caminero, Miguel Ángel ; Chacón, Jesús Miguel ; García-Plaza, Eustaquio ; Núñez, Pedro José ; Becar, Jean Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-21a8541117eb1be126dd287eed70aefd3d17d154fad0377e4af5a8e0c03a7ed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printers</topic><topic>Accuracy</topic><topic>Additive manufacturing</topic><topic>Carbon fiber reinforcement</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Flexural strength</topic><topic>Fused deposition modeling</topic><topic>Geometric accuracy</topic><topic>Interfacial shear strength</topic><topic>Mechanical properties</topic><topic>Polylactic acid</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Quality</topic><topic>Software</topic><topic>Stiffness</topic><topic>Studies</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>Tensile strength</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reverte, José María</creatorcontrib><creatorcontrib>Caminero, Miguel Ángel</creatorcontrib><creatorcontrib>Chacón, Jesús Miguel</creatorcontrib><creatorcontrib>García-Plaza, Eustaquio</creatorcontrib><creatorcontrib>Núñez, Pedro José</creatorcontrib><creatorcontrib>Becar, Jean Paul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reverte, José María</au><au>Caminero, Miguel Ángel</au><au>Chacón, Jesús Miguel</au><au>García-Plaza, Eustaquio</au><au>Núñez, Pedro José</au><au>Becar, Jean Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-04-19</date><risdate>2020</risdate><volume>13</volume><issue>8</issue><spage>1924</spage><pages>1924-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this work, the effect of short carbon fibre (CF) on the mechanical and geometric properties of 3D printed polylactic acid (PLA) composite parts processed using the Fused Filament Fabrication (FFF) technique have been analysed. Tensile, flexural and interlaminar shear strength (ILSS) tests were performed to obtain the mechanical performance of the different samples. The surface quality and geometric accuracy of the printed specimens were also evaluated. Finally, Scanning Electron Microscope (SEM) images of the printed samples are analysed. The results revealed that the addition of carbon fibres effectively improved all assessed mechanical properties of PLA-CF composites as compared to the neat PLA. In particular, Flat PLA-CF samples showed an average increase in tensile performance of 47.1% for the tensile strength and 179.9% for the tensile stiffness in comparison to the neat PLA. From the flexural behaviour point of view, Flat PLA-CF samples revealed an increase in average flexural strength and stiffness of 89.75% and 230.95%, respectively in comparison to the neat PLA. Furthermore, PLA-CF samples depicted the best ILSS performance. In general, the use of short carbon fibre as reinforcement did not affect the dimensional accuracy of the PLA-CF samples, and even improved the surface roughness in certain cases, particularly in Flat and On-edge orientations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32325825</pmid><doi>10.3390/MA13081924</doi><orcidid>https://orcid.org/0000-0001-8709-3673</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-04, Vol.13 (8), p.1924 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7215744 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 3-D printers Accuracy Additive manufacturing Carbon fiber reinforcement Carbon fibers Composite materials Flexural strength Fused deposition modeling Geometric accuracy Interfacial shear strength Mechanical properties Polylactic acid Polymer matrix composites Polymers Quality Software Stiffness Studies Surface properties Surface roughness Tensile strength Three dimensional printing |
title | Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20Geometric%20Performance%20of%20PLA-Based%20Polymer%20Composites%20Processed%20by%20the%20Fused%20Filament%20Fabrication%20Additive%20Manufacturing%20Technique&rft.jtitle=Materials&rft.au=Reverte,%20Jos%C3%A9%20Mar%C3%ADa&rft.date=2020-04-19&rft.volume=13&rft.issue=8&rft.spage=1924&rft.pages=1924-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/MA13081924&rft_dat=%3Cproquest_pubme%3E2394907052%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394444218&rft_id=info:pmid/32325825&rfr_iscdi=true |