Two-parameters numerical methods of the non-symmetric algebraic Riccati equation
In this paper, we focus on finding the minimal non-negative solution of a certain class of non-symmetric algebraic Riccati equations whose four coefficient matrices form a regular M-matrix. Firstly, we present two new numerical algorithms called modified inexact Newton method (MINewton) and modified...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2020-11, Vol.378, p.112933, Article 112933 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we focus on finding the minimal non-negative solution of a certain class of non-symmetric algebraic Riccati equations whose four coefficient matrices form a regular M-matrix. Firstly, we present two new numerical algorithms called modified inexact Newton method (MINewton) and modified structure-preserving doubling method (MSDA). Then we introduce two parameters in these algorithms, and establish the convergence theory by using Cayley transformation. Finally we give some numerical results to show the effectiveness of our derived methods compared with other iteration methods. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2020.112933 |