In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite‐Free Alkali‐Metal‐Ion Batteries

Galvanic replacement reactions have been studied as a versatile route to synthesize nanostructured alloys. However, the galvanic replacement chemistry of alkali metals has rarely been explored. A protective interphase layer will be formed outside templates when the redox potential exceeds the potent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2020-07, Vol.59 (29), p.12170-12177
Hauptverfasser: Ding, Yu, Guo, Xuelin, Qian, Yumin, Gao, Hongcai, Weber, Daniel H., Zhang, Leyuan, Goodenough, John B., Yu, Guihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12177
container_issue 29
container_start_page 12170
container_title Angewandte Chemie (International ed.)
container_volume 59
creator Ding, Yu
Guo, Xuelin
Qian, Yumin
Gao, Hongcai
Weber, Daniel H.
Zhang, Leyuan
Goodenough, John B.
Yu, Guihua
description Galvanic replacement reactions have been studied as a versatile route to synthesize nanostructured alloys. However, the galvanic replacement chemistry of alkali metals has rarely been explored. A protective interphase layer will be formed outside templates when the redox potential exceeds the potential windows of nonaqueous solutions, and the complex interfacial chemistry remains elusive. Here, we demonstrate the formation of room‐temperature liquid metal alloys of Na and K via galvanic replacement reaction. The fundamentals of the reaction at such low potentials are investigated via a combined experimental and computational method, which uncovers the critical role of solid‐electrolyte interphase in regulating the migration of Na ions and thus the alloying reaction kinetics. With in situ formed NaK liquid alloys as an anode, the dendritic growth of alkali metals can be eliminated thanks to the deformable and self‐healing features of liquid metals. The proof‐of‐concept battery delivers reasonable electrochemical performance, confirming the generality of this in situ approach and design principle for next‐generation dendrite‐free batteries. NaK liquid metal alloys are developed via a galvanic replacement reaction. Studying the reaction unravels the critical role of the solid‐electrolyte interphase (SEI) in regulating the migration of Na ions and thus the alloying reaction kinetics. The in situ formation of liquid metals eliminates the dendrite growth issue faced by alkali metals, showing promise in next‐generation alkali‐metal‐ion batteries.
doi_str_mv 10.1002/anie.202005009
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000531544700001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420129998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4379-45582848a53f85ab5e92348514aa9495823828bded2bd6fe3be61037f70b47a73</originalsourceid><addsrcrecordid>eNqNkcuOEzEQRVsIxAwDW5bIgg0S6uBn3L3MhMkQKYDEY2253dXCQ8fOtN2DRmLBJ_CNfAmVB0FiAyuXVedW1dUtiseMThil_KUNHiacckoVpfWd4pQpzkqhtbiLtRSi1JViJ8WDlK6Qryo6vV-cCC6YUrQ-Lb4tA_ng80gWcVjb7GMgsSMrfz36lryBbPtEbrwll7a_wV2OvIdNbx2sIWSsrdtJciTno-9b8gpCO_gMP7__WAwAZNZ_sb3H324Uvkukz23OMHhID4t7HS6AR4f3rPi0uPg4f12u3l0u57NV6aTQdSmVqnglK6tEVynbKKi5kGhLWlvLGpsC-00LLW_aaQeigSmjQneaNlJbLc6Kp_u5MWVvksMD3WcXQwCXDasom-ot9HwPbYZ4PULKZu2Tg763AeKYDBe1mCqtKUX02V_oVRyHgBYMl5wyXtd1hdRkT7khpjRAZzaDX9vh1jBqtuGZbXjmGB4KnhzGjs0a2iP-Oy0Eqj3wFZrYoQ8IDo4YxTEISoknUsrmPu_ynMcxZJS--H8p0vWB9j3c_uNuM3u7vPjj4heYA8eT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420129998</pqid></control><display><type>article</type><title>In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite‐Free Alkali‐Metal‐Ion Batteries</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Wiley Online Library All Journals</source><creator>Ding, Yu ; Guo, Xuelin ; Qian, Yumin ; Gao, Hongcai ; Weber, Daniel H. ; Zhang, Leyuan ; Goodenough, John B. ; Yu, Guihua</creator><creatorcontrib>Ding, Yu ; Guo, Xuelin ; Qian, Yumin ; Gao, Hongcai ; Weber, Daniel H. ; Zhang, Leyuan ; Goodenough, John B. ; Yu, Guihua ; Univ. of Texas, Austin, TX (United States)</creatorcontrib><description>Galvanic replacement reactions have been studied as a versatile route to synthesize nanostructured alloys. However, the galvanic replacement chemistry of alkali metals has rarely been explored. A protective interphase layer will be formed outside templates when the redox potential exceeds the potential windows of nonaqueous solutions, and the complex interfacial chemistry remains elusive. Here, we demonstrate the formation of room‐temperature liquid metal alloys of Na and K via galvanic replacement reaction. The fundamentals of the reaction at such low potentials are investigated via a combined experimental and computational method, which uncovers the critical role of solid‐electrolyte interphase in regulating the migration of Na ions and thus the alloying reaction kinetics. With in situ formed NaK liquid alloys as an anode, the dendritic growth of alkali metals can be eliminated thanks to the deformable and self‐healing features of liquid metals. The proof‐of‐concept battery delivers reasonable electrochemical performance, confirming the generality of this in situ approach and design principle for next‐generation dendrite‐free batteries. NaK liquid metal alloys are developed via a galvanic replacement reaction. Studying the reaction unravels the critical role of the solid‐electrolyte interphase (SEI) in regulating the migration of Na ions and thus the alloying reaction kinetics. The in situ formation of liquid metals eliminates the dendrite growth issue faced by alkali metals, showing promise in next‐generation alkali‐metal‐ion batteries.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202005009</identifier><identifier>PMID: 32315509</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Alkali metal alloys ; Alkali metals ; Alloys ; Batteries ; Chemistry ; Chemistry, Multidisciplinary ; Computer applications ; dendrites ; Dendritic structure ; Electrochemical analysis ; Electrochemistry ; Formability ; galvanic replacement ; interfacial chemistry ; Interphase ; Liquid alloys ; Liquid metals ; Metals ; Physical Sciences ; Reaction kinetics ; Redox potential ; Science &amp; Technology ; Sodium ; sodium-ion batteries</subject><ispartof>Angewandte Chemie (International ed.), 2020-07, Vol.59 (29), p.12170-12177</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>45</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000531544700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4379-45582848a53f85ab5e92348514aa9495823828bded2bd6fe3be61037f70b47a73</citedby><cites>FETCH-LOGICAL-c4379-45582848a53f85ab5e92348514aa9495823828bded2bd6fe3be61037f70b47a73</cites><orcidid>0000-0002-3253-0749 ; 0000-0002-2334-5015 ; 0000-0002-3671-8765 ; 0000000232530749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202005009$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202005009$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,28253,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32315509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1801677$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Yu</creatorcontrib><creatorcontrib>Guo, Xuelin</creatorcontrib><creatorcontrib>Qian, Yumin</creatorcontrib><creatorcontrib>Gao, Hongcai</creatorcontrib><creatorcontrib>Weber, Daniel H.</creatorcontrib><creatorcontrib>Zhang, Leyuan</creatorcontrib><creatorcontrib>Goodenough, John B.</creatorcontrib><creatorcontrib>Yu, Guihua</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><title>In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite‐Free Alkali‐Metal‐Ion Batteries</title><title>Angewandte Chemie (International ed.)</title><addtitle>ANGEW CHEM INT EDIT</addtitle><addtitle>Angew Chem Int Ed Engl</addtitle><description>Galvanic replacement reactions have been studied as a versatile route to synthesize nanostructured alloys. However, the galvanic replacement chemistry of alkali metals has rarely been explored. A protective interphase layer will be formed outside templates when the redox potential exceeds the potential windows of nonaqueous solutions, and the complex interfacial chemistry remains elusive. Here, we demonstrate the formation of room‐temperature liquid metal alloys of Na and K via galvanic replacement reaction. The fundamentals of the reaction at such low potentials are investigated via a combined experimental and computational method, which uncovers the critical role of solid‐electrolyte interphase in regulating the migration of Na ions and thus the alloying reaction kinetics. With in situ formed NaK liquid alloys as an anode, the dendritic growth of alkali metals can be eliminated thanks to the deformable and self‐healing features of liquid metals. The proof‐of‐concept battery delivers reasonable electrochemical performance, confirming the generality of this in situ approach and design principle for next‐generation dendrite‐free batteries. NaK liquid metal alloys are developed via a galvanic replacement reaction. Studying the reaction unravels the critical role of the solid‐electrolyte interphase (SEI) in regulating the migration of Na ions and thus the alloying reaction kinetics. The in situ formation of liquid metals eliminates the dendrite growth issue faced by alkali metals, showing promise in next‐generation alkali‐metal‐ion batteries.</description><subject>Alkali metal alloys</subject><subject>Alkali metals</subject><subject>Alloys</subject><subject>Batteries</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Computer applications</subject><subject>dendrites</subject><subject>Dendritic structure</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Formability</subject><subject>galvanic replacement</subject><subject>interfacial chemistry</subject><subject>Interphase</subject><subject>Liquid alloys</subject><subject>Liquid metals</subject><subject>Metals</subject><subject>Physical Sciences</subject><subject>Reaction kinetics</subject><subject>Redox potential</subject><subject>Science &amp; Technology</subject><subject>Sodium</subject><subject>sodium-ion batteries</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkcuOEzEQRVsIxAwDW5bIgg0S6uBn3L3MhMkQKYDEY2253dXCQ8fOtN2DRmLBJ_CNfAmVB0FiAyuXVedW1dUtiseMThil_KUNHiacckoVpfWd4pQpzkqhtbiLtRSi1JViJ8WDlK6Qryo6vV-cCC6YUrQ-Lb4tA_ng80gWcVjb7GMgsSMrfz36lryBbPtEbrwll7a_wV2OvIdNbx2sIWSsrdtJciTno-9b8gpCO_gMP7__WAwAZNZ_sb3H324Uvkukz23OMHhID4t7HS6AR4f3rPi0uPg4f12u3l0u57NV6aTQdSmVqnglK6tEVynbKKi5kGhLWlvLGpsC-00LLW_aaQeigSmjQneaNlJbLc6Kp_u5MWVvksMD3WcXQwCXDasom-ot9HwPbYZ4PULKZu2Tg763AeKYDBe1mCqtKUX02V_oVRyHgBYMl5wyXtd1hdRkT7khpjRAZzaDX9vh1jBqtuGZbXjmGB4KnhzGjs0a2iP-Oy0Eqj3wFZrYoQ8IDo4YxTEISoknUsrmPu_ynMcxZJS--H8p0vWB9j3c_uNuM3u7vPjj4heYA8eT</recordid><startdate>20200713</startdate><enddate>20200713</enddate><creator>Ding, Yu</creator><creator>Guo, Xuelin</creator><creator>Qian, Yumin</creator><creator>Gao, Hongcai</creator><creator>Weber, Daniel H.</creator><creator>Zhang, Leyuan</creator><creator>Goodenough, John B.</creator><creator>Yu, Guihua</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3253-0749</orcidid><orcidid>https://orcid.org/0000-0002-2334-5015</orcidid><orcidid>https://orcid.org/0000-0002-3671-8765</orcidid><orcidid>https://orcid.org/0000000232530749</orcidid></search><sort><creationdate>20200713</creationdate><title>In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite‐Free Alkali‐Metal‐Ion Batteries</title><author>Ding, Yu ; Guo, Xuelin ; Qian, Yumin ; Gao, Hongcai ; Weber, Daniel H. ; Zhang, Leyuan ; Goodenough, John B. ; Yu, Guihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4379-45582848a53f85ab5e92348514aa9495823828bded2bd6fe3be61037f70b47a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkali metal alloys</topic><topic>Alkali metals</topic><topic>Alloys</topic><topic>Batteries</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Computer applications</topic><topic>dendrites</topic><topic>Dendritic structure</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Formability</topic><topic>galvanic replacement</topic><topic>interfacial chemistry</topic><topic>Interphase</topic><topic>Liquid alloys</topic><topic>Liquid metals</topic><topic>Metals</topic><topic>Physical Sciences</topic><topic>Reaction kinetics</topic><topic>Redox potential</topic><topic>Science &amp; Technology</topic><topic>Sodium</topic><topic>sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yu</creatorcontrib><creatorcontrib>Guo, Xuelin</creatorcontrib><creatorcontrib>Qian, Yumin</creatorcontrib><creatorcontrib>Gao, Hongcai</creatorcontrib><creatorcontrib>Weber, Daniel H.</creatorcontrib><creatorcontrib>Zhang, Leyuan</creatorcontrib><creatorcontrib>Goodenough, John B.</creatorcontrib><creatorcontrib>Yu, Guihua</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yu</au><au>Guo, Xuelin</au><au>Qian, Yumin</au><au>Gao, Hongcai</au><au>Weber, Daniel H.</au><au>Zhang, Leyuan</au><au>Goodenough, John B.</au><au>Yu, Guihua</au><aucorp>Univ. of Texas, Austin, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite‐Free Alkali‐Metal‐Ion Batteries</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><stitle>ANGEW CHEM INT EDIT</stitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-07-13</date><risdate>2020</risdate><volume>59</volume><issue>29</issue><spage>12170</spage><epage>12177</epage><pages>12170-12177</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Galvanic replacement reactions have been studied as a versatile route to synthesize nanostructured alloys. However, the galvanic replacement chemistry of alkali metals has rarely been explored. A protective interphase layer will be formed outside templates when the redox potential exceeds the potential windows of nonaqueous solutions, and the complex interfacial chemistry remains elusive. Here, we demonstrate the formation of room‐temperature liquid metal alloys of Na and K via galvanic replacement reaction. The fundamentals of the reaction at such low potentials are investigated via a combined experimental and computational method, which uncovers the critical role of solid‐electrolyte interphase in regulating the migration of Na ions and thus the alloying reaction kinetics. With in situ formed NaK liquid alloys as an anode, the dendritic growth of alkali metals can be eliminated thanks to the deformable and self‐healing features of liquid metals. The proof‐of‐concept battery delivers reasonable electrochemical performance, confirming the generality of this in situ approach and design principle for next‐generation dendrite‐free batteries. NaK liquid metal alloys are developed via a galvanic replacement reaction. Studying the reaction unravels the critical role of the solid‐electrolyte interphase (SEI) in regulating the migration of Na ions and thus the alloying reaction kinetics. The in situ formation of liquid metals eliminates the dendrite growth issue faced by alkali metals, showing promise in next‐generation alkali‐metal‐ion batteries.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>32315509</pmid><doi>10.1002/anie.202005009</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-3253-0749</orcidid><orcidid>https://orcid.org/0000-0002-2334-5015</orcidid><orcidid>https://orcid.org/0000-0002-3671-8765</orcidid><orcidid>https://orcid.org/0000000232530749</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2020-07, Vol.59 (29), p.12170-12177
issn 1433-7851
1521-3773
language eng
recordid cdi_webofscience_primary_000531544700001CitationCount
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library All Journals
subjects Alkali metal alloys
Alkali metals
Alloys
Batteries
Chemistry
Chemistry, Multidisciplinary
Computer applications
dendrites
Dendritic structure
Electrochemical analysis
Electrochemistry
Formability
galvanic replacement
interfacial chemistry
Interphase
Liquid alloys
Liquid metals
Metals
Physical Sciences
Reaction kinetics
Redox potential
Science & Technology
Sodium
sodium-ion batteries
title In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite‐Free Alkali‐Metal‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Formation%20of%20Liquid%20Metals%20via%20Galvanic%20Replacement%20Reaction%20to%20Build%20Dendrite%E2%80%90Free%20Alkali%E2%80%90Metal%E2%80%90Ion%20Batteries&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Ding,%20Yu&rft.aucorp=Univ.%20of%20Texas,%20Austin,%20TX%20(United%20States)&rft.date=2020-07-13&rft.volume=59&rft.issue=29&rft.spage=12170&rft.epage=12177&rft.pages=12170-12177&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202005009&rft_dat=%3Cproquest_webof%3E2420129998%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420129998&rft_id=info:pmid/32315509&rfr_iscdi=true