In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite‐Free Alkali‐Metal‐Ion Batteries
Galvanic replacement reactions have been studied as a versatile route to synthesize nanostructured alloys. However, the galvanic replacement chemistry of alkali metals has rarely been explored. A protective interphase layer will be formed outside templates when the redox potential exceeds the potent...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie (International ed.) 2020-07, Vol.59 (29), p.12170-12177 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12177 |
---|---|
container_issue | 29 |
container_start_page | 12170 |
container_title | Angewandte Chemie (International ed.) |
container_volume | 59 |
creator | Ding, Yu Guo, Xuelin Qian, Yumin Gao, Hongcai Weber, Daniel H. Zhang, Leyuan Goodenough, John B. Yu, Guihua |
description | Galvanic replacement reactions have been studied as a versatile route to synthesize nanostructured alloys. However, the galvanic replacement chemistry of alkali metals has rarely been explored. A protective interphase layer will be formed outside templates when the redox potential exceeds the potential windows of nonaqueous solutions, and the complex interfacial chemistry remains elusive. Here, we demonstrate the formation of room‐temperature liquid metal alloys of Na and K via galvanic replacement reaction. The fundamentals of the reaction at such low potentials are investigated via a combined experimental and computational method, which uncovers the critical role of solid‐electrolyte interphase in regulating the migration of Na ions and thus the alloying reaction kinetics. With in situ formed NaK liquid alloys as an anode, the dendritic growth of alkali metals can be eliminated thanks to the deformable and self‐healing features of liquid metals. The proof‐of‐concept battery delivers reasonable electrochemical performance, confirming the generality of this in situ approach and design principle for next‐generation dendrite‐free batteries.
NaK liquid metal alloys are developed via a galvanic replacement reaction. Studying the reaction unravels the critical role of the solid‐electrolyte interphase (SEI) in regulating the migration of Na ions and thus the alloying reaction kinetics. The in situ formation of liquid metals eliminates the dendrite growth issue faced by alkali metals, showing promise in next‐generation alkali‐metal‐ion batteries. |
doi_str_mv | 10.1002/anie.202005009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000531544700001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420129998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4379-45582848a53f85ab5e92348514aa9495823828bded2bd6fe3be61037f70b47a73</originalsourceid><addsrcrecordid>eNqNkcuOEzEQRVsIxAwDW5bIgg0S6uBn3L3MhMkQKYDEY2253dXCQ8fOtN2DRmLBJ_CNfAmVB0FiAyuXVedW1dUtiseMThil_KUNHiacckoVpfWd4pQpzkqhtbiLtRSi1JViJ8WDlK6Qryo6vV-cCC6YUrQ-Lb4tA_ng80gWcVjb7GMgsSMrfz36lryBbPtEbrwll7a_wV2OvIdNbx2sIWSsrdtJciTno-9b8gpCO_gMP7__WAwAZNZ_sb3H324Uvkukz23OMHhID4t7HS6AR4f3rPi0uPg4f12u3l0u57NV6aTQdSmVqnglK6tEVynbKKi5kGhLWlvLGpsC-00LLW_aaQeigSmjQneaNlJbLc6Kp_u5MWVvksMD3WcXQwCXDasom-ot9HwPbYZ4PULKZu2Tg763AeKYDBe1mCqtKUX02V_oVRyHgBYMl5wyXtd1hdRkT7khpjRAZzaDX9vh1jBqtuGZbXjmGB4KnhzGjs0a2iP-Oy0Eqj3wFZrYoQ8IDo4YxTEISoknUsrmPu_ynMcxZJS--H8p0vWB9j3c_uNuM3u7vPjj4heYA8eT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420129998</pqid></control><display><type>article</type><title>In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite‐Free Alkali‐Metal‐Ion Batteries</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Wiley Online Library All Journals</source><creator>Ding, Yu ; Guo, Xuelin ; Qian, Yumin ; Gao, Hongcai ; Weber, Daniel H. ; Zhang, Leyuan ; Goodenough, John B. ; Yu, Guihua</creator><creatorcontrib>Ding, Yu ; Guo, Xuelin ; Qian, Yumin ; Gao, Hongcai ; Weber, Daniel H. ; Zhang, Leyuan ; Goodenough, John B. ; Yu, Guihua ; Univ. of Texas, Austin, TX (United States)</creatorcontrib><description>Galvanic replacement reactions have been studied as a versatile route to synthesize nanostructured alloys. However, the galvanic replacement chemistry of alkali metals has rarely been explored. A protective interphase layer will be formed outside templates when the redox potential exceeds the potential windows of nonaqueous solutions, and the complex interfacial chemistry remains elusive. Here, we demonstrate the formation of room‐temperature liquid metal alloys of Na and K via galvanic replacement reaction. The fundamentals of the reaction at such low potentials are investigated via a combined experimental and computational method, which uncovers the critical role of solid‐electrolyte interphase in regulating the migration of Na ions and thus the alloying reaction kinetics. With in situ formed NaK liquid alloys as an anode, the dendritic growth of alkali metals can be eliminated thanks to the deformable and self‐healing features of liquid metals. The proof‐of‐concept battery delivers reasonable electrochemical performance, confirming the generality of this in situ approach and design principle for next‐generation dendrite‐free batteries.
NaK liquid metal alloys are developed via a galvanic replacement reaction. Studying the reaction unravels the critical role of the solid‐electrolyte interphase (SEI) in regulating the migration of Na ions and thus the alloying reaction kinetics. The in situ formation of liquid metals eliminates the dendrite growth issue faced by alkali metals, showing promise in next‐generation alkali‐metal‐ion batteries.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202005009</identifier><identifier>PMID: 32315509</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Alkali metal alloys ; Alkali metals ; Alloys ; Batteries ; Chemistry ; Chemistry, Multidisciplinary ; Computer applications ; dendrites ; Dendritic structure ; Electrochemical analysis ; Electrochemistry ; Formability ; galvanic replacement ; interfacial chemistry ; Interphase ; Liquid alloys ; Liquid metals ; Metals ; Physical Sciences ; Reaction kinetics ; Redox potential ; Science & Technology ; Sodium ; sodium-ion batteries</subject><ispartof>Angewandte Chemie (International ed.), 2020-07, Vol.59 (29), p.12170-12177</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>45</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000531544700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4379-45582848a53f85ab5e92348514aa9495823828bded2bd6fe3be61037f70b47a73</citedby><cites>FETCH-LOGICAL-c4379-45582848a53f85ab5e92348514aa9495823828bded2bd6fe3be61037f70b47a73</cites><orcidid>0000-0002-3253-0749 ; 0000-0002-2334-5015 ; 0000-0002-3671-8765 ; 0000000232530749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202005009$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202005009$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,28253,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32315509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1801677$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Yu</creatorcontrib><creatorcontrib>Guo, Xuelin</creatorcontrib><creatorcontrib>Qian, Yumin</creatorcontrib><creatorcontrib>Gao, Hongcai</creatorcontrib><creatorcontrib>Weber, Daniel H.</creatorcontrib><creatorcontrib>Zhang, Leyuan</creatorcontrib><creatorcontrib>Goodenough, John B.</creatorcontrib><creatorcontrib>Yu, Guihua</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><title>In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite‐Free Alkali‐Metal‐Ion Batteries</title><title>Angewandte Chemie (International ed.)</title><addtitle>ANGEW CHEM INT EDIT</addtitle><addtitle>Angew Chem Int Ed Engl</addtitle><description>Galvanic replacement reactions have been studied as a versatile route to synthesize nanostructured alloys. However, the galvanic replacement chemistry of alkali metals has rarely been explored. A protective interphase layer will be formed outside templates when the redox potential exceeds the potential windows of nonaqueous solutions, and the complex interfacial chemistry remains elusive. Here, we demonstrate the formation of room‐temperature liquid metal alloys of Na and K via galvanic replacement reaction. The fundamentals of the reaction at such low potentials are investigated via a combined experimental and computational method, which uncovers the critical role of solid‐electrolyte interphase in regulating the migration of Na ions and thus the alloying reaction kinetics. With in situ formed NaK liquid alloys as an anode, the dendritic growth of alkali metals can be eliminated thanks to the deformable and self‐healing features of liquid metals. The proof‐of‐concept battery delivers reasonable electrochemical performance, confirming the generality of this in situ approach and design principle for next‐generation dendrite‐free batteries.
NaK liquid metal alloys are developed via a galvanic replacement reaction. Studying the reaction unravels the critical role of the solid‐electrolyte interphase (SEI) in regulating the migration of Na ions and thus the alloying reaction kinetics. The in situ formation of liquid metals eliminates the dendrite growth issue faced by alkali metals, showing promise in next‐generation alkali‐metal‐ion batteries.</description><subject>Alkali metal alloys</subject><subject>Alkali metals</subject><subject>Alloys</subject><subject>Batteries</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Computer applications</subject><subject>dendrites</subject><subject>Dendritic structure</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Formability</subject><subject>galvanic replacement</subject><subject>interfacial chemistry</subject><subject>Interphase</subject><subject>Liquid alloys</subject><subject>Liquid metals</subject><subject>Metals</subject><subject>Physical Sciences</subject><subject>Reaction kinetics</subject><subject>Redox potential</subject><subject>Science & Technology</subject><subject>Sodium</subject><subject>sodium-ion batteries</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkcuOEzEQRVsIxAwDW5bIgg0S6uBn3L3MhMkQKYDEY2253dXCQ8fOtN2DRmLBJ_CNfAmVB0FiAyuXVedW1dUtiseMThil_KUNHiacckoVpfWd4pQpzkqhtbiLtRSi1JViJ8WDlK6Qryo6vV-cCC6YUrQ-Lb4tA_ng80gWcVjb7GMgsSMrfz36lryBbPtEbrwll7a_wV2OvIdNbx2sIWSsrdtJciTno-9b8gpCO_gMP7__WAwAZNZ_sb3H324Uvkukz23OMHhID4t7HS6AR4f3rPi0uPg4f12u3l0u57NV6aTQdSmVqnglK6tEVynbKKi5kGhLWlvLGpsC-00LLW_aaQeigSmjQneaNlJbLc6Kp_u5MWVvksMD3WcXQwCXDasom-ot9HwPbYZ4PULKZu2Tg763AeKYDBe1mCqtKUX02V_oVRyHgBYMl5wyXtd1hdRkT7khpjRAZzaDX9vh1jBqtuGZbXjmGB4KnhzGjs0a2iP-Oy0Eqj3wFZrYoQ8IDo4YxTEISoknUsrmPu_ynMcxZJS--H8p0vWB9j3c_uNuM3u7vPjj4heYA8eT</recordid><startdate>20200713</startdate><enddate>20200713</enddate><creator>Ding, Yu</creator><creator>Guo, Xuelin</creator><creator>Qian, Yumin</creator><creator>Gao, Hongcai</creator><creator>Weber, Daniel H.</creator><creator>Zhang, Leyuan</creator><creator>Goodenough, John B.</creator><creator>Yu, Guihua</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3253-0749</orcidid><orcidid>https://orcid.org/0000-0002-2334-5015</orcidid><orcidid>https://orcid.org/0000-0002-3671-8765</orcidid><orcidid>https://orcid.org/0000000232530749</orcidid></search><sort><creationdate>20200713</creationdate><title>In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite‐Free Alkali‐Metal‐Ion Batteries</title><author>Ding, Yu ; Guo, Xuelin ; Qian, Yumin ; Gao, Hongcai ; Weber, Daniel H. ; Zhang, Leyuan ; Goodenough, John B. ; Yu, Guihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4379-45582848a53f85ab5e92348514aa9495823828bded2bd6fe3be61037f70b47a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkali metal alloys</topic><topic>Alkali metals</topic><topic>Alloys</topic><topic>Batteries</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Computer applications</topic><topic>dendrites</topic><topic>Dendritic structure</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Formability</topic><topic>galvanic replacement</topic><topic>interfacial chemistry</topic><topic>Interphase</topic><topic>Liquid alloys</topic><topic>Liquid metals</topic><topic>Metals</topic><topic>Physical Sciences</topic><topic>Reaction kinetics</topic><topic>Redox potential</topic><topic>Science & Technology</topic><topic>Sodium</topic><topic>sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yu</creatorcontrib><creatorcontrib>Guo, Xuelin</creatorcontrib><creatorcontrib>Qian, Yumin</creatorcontrib><creatorcontrib>Gao, Hongcai</creatorcontrib><creatorcontrib>Weber, Daniel H.</creatorcontrib><creatorcontrib>Zhang, Leyuan</creatorcontrib><creatorcontrib>Goodenough, John B.</creatorcontrib><creatorcontrib>Yu, Guihua</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yu</au><au>Guo, Xuelin</au><au>Qian, Yumin</au><au>Gao, Hongcai</au><au>Weber, Daniel H.</au><au>Zhang, Leyuan</au><au>Goodenough, John B.</au><au>Yu, Guihua</au><aucorp>Univ. of Texas, Austin, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite‐Free Alkali‐Metal‐Ion Batteries</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><stitle>ANGEW CHEM INT EDIT</stitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-07-13</date><risdate>2020</risdate><volume>59</volume><issue>29</issue><spage>12170</spage><epage>12177</epage><pages>12170-12177</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Galvanic replacement reactions have been studied as a versatile route to synthesize nanostructured alloys. However, the galvanic replacement chemistry of alkali metals has rarely been explored. A protective interphase layer will be formed outside templates when the redox potential exceeds the potential windows of nonaqueous solutions, and the complex interfacial chemistry remains elusive. Here, we demonstrate the formation of room‐temperature liquid metal alloys of Na and K via galvanic replacement reaction. The fundamentals of the reaction at such low potentials are investigated via a combined experimental and computational method, which uncovers the critical role of solid‐electrolyte interphase in regulating the migration of Na ions and thus the alloying reaction kinetics. With in situ formed NaK liquid alloys as an anode, the dendritic growth of alkali metals can be eliminated thanks to the deformable and self‐healing features of liquid metals. The proof‐of‐concept battery delivers reasonable electrochemical performance, confirming the generality of this in situ approach and design principle for next‐generation dendrite‐free batteries.
NaK liquid metal alloys are developed via a galvanic replacement reaction. Studying the reaction unravels the critical role of the solid‐electrolyte interphase (SEI) in regulating the migration of Na ions and thus the alloying reaction kinetics. The in situ formation of liquid metals eliminates the dendrite growth issue faced by alkali metals, showing promise in next‐generation alkali‐metal‐ion batteries.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>32315509</pmid><doi>10.1002/anie.202005009</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-3253-0749</orcidid><orcidid>https://orcid.org/0000-0002-2334-5015</orcidid><orcidid>https://orcid.org/0000-0002-3671-8765</orcidid><orcidid>https://orcid.org/0000000232530749</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2020-07, Vol.59 (29), p.12170-12177 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_webofscience_primary_000531544700001CitationCount |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library All Journals |
subjects | Alkali metal alloys Alkali metals Alloys Batteries Chemistry Chemistry, Multidisciplinary Computer applications dendrites Dendritic structure Electrochemical analysis Electrochemistry Formability galvanic replacement interfacial chemistry Interphase Liquid alloys Liquid metals Metals Physical Sciences Reaction kinetics Redox potential Science & Technology Sodium sodium-ion batteries |
title | In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite‐Free Alkali‐Metal‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Formation%20of%20Liquid%20Metals%20via%20Galvanic%20Replacement%20Reaction%20to%20Build%20Dendrite%E2%80%90Free%20Alkali%E2%80%90Metal%E2%80%90Ion%20Batteries&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Ding,%20Yu&rft.aucorp=Univ.%20of%20Texas,%20Austin,%20TX%20(United%20States)&rft.date=2020-07-13&rft.volume=59&rft.issue=29&rft.spage=12170&rft.epage=12177&rft.pages=12170-12177&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202005009&rft_dat=%3Cproquest_webof%3E2420129998%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420129998&rft_id=info:pmid/32315509&rfr_iscdi=true |