From metal-organic frameworks to porous carbon materials: recent progress and prospects from energy and environmental perspectives

Metal-organic frameworks (MOFs) have emerged as promising materials in the areas of gas storage, magnetism, luminescence, and catalysis owing to their superior property of having highly crystalline structures. However, MOF stability toward heat or humidity is considerably less as compared to carbons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-02, Vol.12 (7), p.4238-4268
Hauptverfasser: Wang, Jing, Wang, Yuelin, Hu, Hongbo, Yang, Qipeng, Cai, Jinjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal-organic frameworks (MOFs) have emerged as promising materials in the areas of gas storage, magnetism, luminescence, and catalysis owing to their superior property of having highly crystalline structures. However, MOF stability toward heat or humidity is considerably less as compared to carbons because they are constructed from the assembly of ligands with metal ions or clusters via coordination bonds. Transforming MOFs into carbons is bringing the novel potential for MOFs to achieve industrialization, and carbons with controlled pore sizes and surface doping are one of the most important porous materials. By selecting MOFs as a precursor or template, carbons with heteroatom doping and well-developed pores can be achieved. In this review, we discussed the state-of-art study progress made in the new development of MOF-derived metal-free porous carbons. In particular, the potential use of metal-free carbons from environmental and energy perspectives, such as adsorption, supercapacitors, and catalysts, were analyzed in detail. Moreover, an outlook for the sustainable development of MOF-derived porous carbons in the future was also presented. Transforming MOFs into metal-free carbons is bringing the novel potential for MOFs to achieve industrialization owing to their with highly crystalline porous structures, showing great potential on the energy storage and environmental applications.
ISSN:2040-3364
2040-3372
DOI:10.1039/c9nr09697c