Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model

Permeability is an important rock property in exploration geophysics. Darcy's law assumes a steady‐state regime and constant permeability. However, recent studies showed that the effects of fluid viscosity and pore geometry on permeability cannot be neglected. The periodic variation of pore flu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2020-03, Vol.125 (3), p.no-no, Article 2019
Hauptverfasser: Xiong, Fansheng, Sun, Weitao, Ba, Jing, Carcione, José M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page no
container_issue 3
container_start_page no
container_title Journal of geophysical research. Solid earth
container_volume 125
creator Xiong, Fansheng
Sun, Weitao
Ba, Jing
Carcione, José M.
description Permeability is an important rock property in exploration geophysics. Darcy's law assumes a steady‐state regime and constant permeability. However, recent studies showed that the effects of fluid viscosity and pore geometry on permeability cannot be neglected. The periodic variation of pore fluid pressure gradient due to elastic wave propagation induces the oscillated fluid flow. We consider a Maxwell fluid in a 3‐D pore network subject to harmonic oscillations. The network is based on the Voronoi method, which provides a realistic connectivity. The permeability of polyethylene oxide and cetylpyridinium chloride and sodium salicylate solution have been simulated. The results show that permeability is constant at frequencies less than several kHz and rapidly decreases to extremely low values as frequency tends to infinite. In addition, we find that fluid mainly flows in sparse‐large pore networks at low frequencies and in dense‐small pore networks at high frequencies. The Maxwell fluid shows significant permeability peaks related to the mean coordination number, indicating that there exists an optimal network connectivity at which fluid flow is maximum. These results have been central to understand how fluid flows in natural reservoir rocks. The permeability variations versus frequency, fluid rheology, and pore connectivity provide key information of reservoir fluid properties and pore network structure. The results indicate that it is questionable whether Darcy static permeability can be applied at high frequencies. Key Points We study how fluid rheology and pore connectivity affect the permeability of pore networks Fluid rheology has a significant effect on permeability; peaks are observed on permeability‐frequency curves for a Maxwell fluid Pore‐network connectivity plays a key role, since the pore radius and mean coordination number lead to permeability variations for the same porosity
doi_str_mv 10.1029/2019JB018857
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000530895800013CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383118390</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3305-258d20a94eec80493a01584fae33584f7a24f11e7b69011e2d58197e8abc4463</originalsourceid><addsrcrecordid>eNqNkEFPAjEQhRujiQS5-QOaeFS03bbQHmUDKEElhKvZlN1ZLSxbbBfJ_nu7gRBPxrm8ycz3ps1D6JqSe0oi9RARqiYDQqUU_TPUimhPdRUTvfNTT9kl6ni_IqFkGFHeQu_DPIe08tjmeFTsTIbnn2AL-1FjXWZ4Zh3g2JZlYMy3qWpsSzy36RrPwG1AL03RDAfaQ9asNH6Fam_dGr_YDIordJHrwkPnqG20GA0X8VN3-jZ-jh-nXc0YEd1IyCwiWnGAVBKumCZUSJ5rYKzRvo54Tin0lz1FgkaZkFT1QeplynmPtdHN4ezW2a8d-CpZ2Z0rw4tJxCSjVDJFAnV3oFJnvXeQJ1tnNtrVCSVJE2HyO8KAywO-h6XNfWqgTOFkCREKRqQSMnSUxabSlbFlbHdlFay3_7cGmh1pU0D956eSyXg-EJxwwX4Ahk6QyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383118390</pqid></control><display><type>article</type><title>Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Wiley Online Library (Open Access Collection)</source><creator>Xiong, Fansheng ; Sun, Weitao ; Ba, Jing ; Carcione, José M.</creator><creatorcontrib>Xiong, Fansheng ; Sun, Weitao ; Ba, Jing ; Carcione, José M.</creatorcontrib><description>Permeability is an important rock property in exploration geophysics. Darcy's law assumes a steady‐state regime and constant permeability. However, recent studies showed that the effects of fluid viscosity and pore geometry on permeability cannot be neglected. The periodic variation of pore fluid pressure gradient due to elastic wave propagation induces the oscillated fluid flow. We consider a Maxwell fluid in a 3‐D pore network subject to harmonic oscillations. The network is based on the Voronoi method, which provides a realistic connectivity. The permeability of polyethylene oxide and cetylpyridinium chloride and sodium salicylate solution have been simulated. The results show that permeability is constant at frequencies less than several kHz and rapidly decreases to extremely low values as frequency tends to infinite. In addition, we find that fluid mainly flows in sparse‐large pore networks at low frequencies and in dense‐small pore networks at high frequencies. The Maxwell fluid shows significant permeability peaks related to the mean coordination number, indicating that there exists an optimal network connectivity at which fluid flow is maximum. These results have been central to understand how fluid flows in natural reservoir rocks. The permeability variations versus frequency, fluid rheology, and pore connectivity provide key information of reservoir fluid properties and pore network structure. The results indicate that it is questionable whether Darcy static permeability can be applied at high frequencies. Key Points We study how fluid rheology and pore connectivity affect the permeability of pore networks Fluid rheology has a significant effect on permeability; peaks are observed on permeability‐frequency curves for a Maxwell fluid Pore‐network connectivity plays a key role, since the pore radius and mean coordination number lead to permeability variations for the same porosity</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2019JB018857</identifier><language>eng</language><publisher>WASHINGTON: Amer Geophysical Union</publisher><subject>Cetylpyridinium chloride ; Computational fluid dynamics ; Computer simulation ; Connectivity ; Coordination numbers ; Darcy's law ; Darcys law ; Elastic waves ; Exploration ; Extreme values ; Fluid flow ; Fluid pressure ; frequency‐dependent permeability ; Geochemistry &amp; Geophysics ; Geophysics ; Harmonic oscillation ; High frequencies ; Maxwell fluid ; Maxwell fluids ; Membrane permeability ; Oscillations ; Periodic variations ; Permeability ; Physical Sciences ; Polyethylene ; Polyethylene oxide ; Pressure gradients ; random pore network ; Reservoirs ; Rheological properties ; Rheology ; Rock properties ; Rocks ; Salicylic acid ; Science &amp; Technology ; Sodium ; Sodium salicylate ; Sodium salicylates ; Viscosity ; Wave propagation</subject><ispartof>Journal of geophysical research. Solid earth, 2020-03, Vol.125 (3), p.no-no, Article 2019</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000530895800013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a3305-258d20a94eec80493a01584fae33584f7a24f11e7b69011e2d58197e8abc4463</citedby><cites>FETCH-LOGICAL-a3305-258d20a94eec80493a01584fae33584f7a24f11e7b69011e2d58197e8abc4463</cites><orcidid>0000-0002-2839-705X ; 0000-0002-9861-0186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019JB018857$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019JB018857$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27929,27930,28253,45579,45580,46414,46838</link.rule.ids></links><search><creatorcontrib>Xiong, Fansheng</creatorcontrib><creatorcontrib>Sun, Weitao</creatorcontrib><creatorcontrib>Ba, Jing</creatorcontrib><creatorcontrib>Carcione, José M.</creatorcontrib><title>Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model</title><title>Journal of geophysical research. Solid earth</title><addtitle>J GEOPHYS RES-SOL EA</addtitle><description>Permeability is an important rock property in exploration geophysics. Darcy's law assumes a steady‐state regime and constant permeability. However, recent studies showed that the effects of fluid viscosity and pore geometry on permeability cannot be neglected. The periodic variation of pore fluid pressure gradient due to elastic wave propagation induces the oscillated fluid flow. We consider a Maxwell fluid in a 3‐D pore network subject to harmonic oscillations. The network is based on the Voronoi method, which provides a realistic connectivity. The permeability of polyethylene oxide and cetylpyridinium chloride and sodium salicylate solution have been simulated. The results show that permeability is constant at frequencies less than several kHz and rapidly decreases to extremely low values as frequency tends to infinite. In addition, we find that fluid mainly flows in sparse‐large pore networks at low frequencies and in dense‐small pore networks at high frequencies. The Maxwell fluid shows significant permeability peaks related to the mean coordination number, indicating that there exists an optimal network connectivity at which fluid flow is maximum. These results have been central to understand how fluid flows in natural reservoir rocks. The permeability variations versus frequency, fluid rheology, and pore connectivity provide key information of reservoir fluid properties and pore network structure. The results indicate that it is questionable whether Darcy static permeability can be applied at high frequencies. Key Points We study how fluid rheology and pore connectivity affect the permeability of pore networks Fluid rheology has a significant effect on permeability; peaks are observed on permeability‐frequency curves for a Maxwell fluid Pore‐network connectivity plays a key role, since the pore radius and mean coordination number lead to permeability variations for the same porosity</description><subject>Cetylpyridinium chloride</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Connectivity</subject><subject>Coordination numbers</subject><subject>Darcy's law</subject><subject>Darcys law</subject><subject>Elastic waves</subject><subject>Exploration</subject><subject>Extreme values</subject><subject>Fluid flow</subject><subject>Fluid pressure</subject><subject>frequency‐dependent permeability</subject><subject>Geochemistry &amp; Geophysics</subject><subject>Geophysics</subject><subject>Harmonic oscillation</subject><subject>High frequencies</subject><subject>Maxwell fluid</subject><subject>Maxwell fluids</subject><subject>Membrane permeability</subject><subject>Oscillations</subject><subject>Periodic variations</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Polyethylene</subject><subject>Polyethylene oxide</subject><subject>Pressure gradients</subject><subject>random pore network</subject><subject>Reservoirs</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Rock properties</subject><subject>Rocks</subject><subject>Salicylic acid</subject><subject>Science &amp; Technology</subject><subject>Sodium</subject><subject>Sodium salicylate</subject><subject>Sodium salicylates</subject><subject>Viscosity</subject><subject>Wave propagation</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkEFPAjEQhRujiQS5-QOaeFS03bbQHmUDKEElhKvZlN1ZLSxbbBfJ_nu7gRBPxrm8ycz3ps1D6JqSe0oi9RARqiYDQqUU_TPUimhPdRUTvfNTT9kl6ni_IqFkGFHeQu_DPIe08tjmeFTsTIbnn2AL-1FjXWZ4Zh3g2JZlYMy3qWpsSzy36RrPwG1AL03RDAfaQ9asNH6Fam_dGr_YDIordJHrwkPnqG20GA0X8VN3-jZ-jh-nXc0YEd1IyCwiWnGAVBKumCZUSJ5rYKzRvo54Tin0lz1FgkaZkFT1QeplynmPtdHN4ezW2a8d-CpZ2Z0rw4tJxCSjVDJFAnV3oFJnvXeQJ1tnNtrVCSVJE2HyO8KAywO-h6XNfWqgTOFkCREKRqQSMnSUxabSlbFlbHdlFay3_7cGmh1pU0D956eSyXg-EJxwwX4Ahk6QyA</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Xiong, Fansheng</creator><creator>Sun, Weitao</creator><creator>Ba, Jing</creator><creator>Carcione, José M.</creator><general>Amer Geophysical Union</general><general>Blackwell Publishing Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2839-705X</orcidid><orcidid>https://orcid.org/0000-0002-9861-0186</orcidid></search><sort><creationdate>202003</creationdate><title>Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model</title><author>Xiong, Fansheng ; Sun, Weitao ; Ba, Jing ; Carcione, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3305-258d20a94eec80493a01584fae33584f7a24f11e7b69011e2d58197e8abc4463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cetylpyridinium chloride</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Connectivity</topic><topic>Coordination numbers</topic><topic>Darcy's law</topic><topic>Darcys law</topic><topic>Elastic waves</topic><topic>Exploration</topic><topic>Extreme values</topic><topic>Fluid flow</topic><topic>Fluid pressure</topic><topic>frequency‐dependent permeability</topic><topic>Geochemistry &amp; Geophysics</topic><topic>Geophysics</topic><topic>Harmonic oscillation</topic><topic>High frequencies</topic><topic>Maxwell fluid</topic><topic>Maxwell fluids</topic><topic>Membrane permeability</topic><topic>Oscillations</topic><topic>Periodic variations</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Polyethylene</topic><topic>Polyethylene oxide</topic><topic>Pressure gradients</topic><topic>random pore network</topic><topic>Reservoirs</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Rock properties</topic><topic>Rocks</topic><topic>Salicylic acid</topic><topic>Science &amp; Technology</topic><topic>Sodium</topic><topic>Sodium salicylate</topic><topic>Sodium salicylates</topic><topic>Viscosity</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Fansheng</creatorcontrib><creatorcontrib>Sun, Weitao</creatorcontrib><creatorcontrib>Ba, Jing</creatorcontrib><creatorcontrib>Carcione, José M.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Fansheng</au><au>Sun, Weitao</au><au>Ba, Jing</au><au>Carcione, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><stitle>J GEOPHYS RES-SOL EA</stitle><date>2020-03</date><risdate>2020</risdate><volume>125</volume><issue>3</issue><spage>no</spage><epage>no</epage><pages>no-no</pages><artnum>2019</artnum><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Permeability is an important rock property in exploration geophysics. Darcy's law assumes a steady‐state regime and constant permeability. However, recent studies showed that the effects of fluid viscosity and pore geometry on permeability cannot be neglected. The periodic variation of pore fluid pressure gradient due to elastic wave propagation induces the oscillated fluid flow. We consider a Maxwell fluid in a 3‐D pore network subject to harmonic oscillations. The network is based on the Voronoi method, which provides a realistic connectivity. The permeability of polyethylene oxide and cetylpyridinium chloride and sodium salicylate solution have been simulated. The results show that permeability is constant at frequencies less than several kHz and rapidly decreases to extremely low values as frequency tends to infinite. In addition, we find that fluid mainly flows in sparse‐large pore networks at low frequencies and in dense‐small pore networks at high frequencies. The Maxwell fluid shows significant permeability peaks related to the mean coordination number, indicating that there exists an optimal network connectivity at which fluid flow is maximum. These results have been central to understand how fluid flows in natural reservoir rocks. The permeability variations versus frequency, fluid rheology, and pore connectivity provide key information of reservoir fluid properties and pore network structure. The results indicate that it is questionable whether Darcy static permeability can be applied at high frequencies. Key Points We study how fluid rheology and pore connectivity affect the permeability of pore networks Fluid rheology has a significant effect on permeability; peaks are observed on permeability‐frequency curves for a Maxwell fluid Pore‐network connectivity plays a key role, since the pore radius and mean coordination number lead to permeability variations for the same porosity</abstract><cop>WASHINGTON</cop><pub>Amer Geophysical Union</pub><doi>10.1029/2019JB018857</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2839-705X</orcidid><orcidid>https://orcid.org/0000-0002-9861-0186</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2020-03, Vol.125 (3), p.no-no, Article 2019
issn 2169-9313
2169-9356
language eng
recordid cdi_webofscience_primary_000530895800013CitationCount
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection)
subjects Cetylpyridinium chloride
Computational fluid dynamics
Computer simulation
Connectivity
Coordination numbers
Darcy's law
Darcys law
Elastic waves
Exploration
Extreme values
Fluid flow
Fluid pressure
frequency‐dependent permeability
Geochemistry & Geophysics
Geophysics
Harmonic oscillation
High frequencies
Maxwell fluid
Maxwell fluids
Membrane permeability
Oscillations
Periodic variations
Permeability
Physical Sciences
Polyethylene
Polyethylene oxide
Pressure gradients
random pore network
Reservoirs
Rheological properties
Rheology
Rock properties
Rocks
Salicylic acid
Science & Technology
Sodium
Sodium salicylate
Sodium salicylates
Viscosity
Wave propagation
title Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Fluid%20Rheology%20and%20Pore%20Connectivity%20on%20Rock%20Permeability%20Based%20on%20a%20Network%20Model&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Xiong,%20Fansheng&rft.date=2020-03&rft.volume=125&rft.issue=3&rft.spage=no&rft.epage=no&rft.pages=no-no&rft.artnum=2019&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2019JB018857&rft_dat=%3Cproquest_webof%3E2383118390%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383118390&rft_id=info:pmid/&rfr_iscdi=true