Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model
Permeability is an important rock property in exploration geophysics. Darcy's law assumes a steady‐state regime and constant permeability. However, recent studies showed that the effects of fluid viscosity and pore geometry on permeability cannot be neglected. The periodic variation of pore flu...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2020-03, Vol.125 (3), p.no-no, Article 2019 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | no |
---|---|
container_issue | 3 |
container_start_page | no |
container_title | Journal of geophysical research. Solid earth |
container_volume | 125 |
creator | Xiong, Fansheng Sun, Weitao Ba, Jing Carcione, José M. |
description | Permeability is an important rock property in exploration geophysics. Darcy's law assumes a steady‐state regime and constant permeability. However, recent studies showed that the effects of fluid viscosity and pore geometry on permeability cannot be neglected. The periodic variation of pore fluid pressure gradient due to elastic wave propagation induces the oscillated fluid flow. We consider a Maxwell fluid in a 3‐D pore network subject to harmonic oscillations. The network is based on the Voronoi method, which provides a realistic connectivity. The permeability of polyethylene oxide and cetylpyridinium chloride and sodium salicylate solution have been simulated. The results show that permeability is constant at frequencies less than several kHz and rapidly decreases to extremely low values as frequency tends to infinite. In addition, we find that fluid mainly flows in sparse‐large pore networks at low frequencies and in dense‐small pore networks at high frequencies. The Maxwell fluid shows significant permeability peaks related to the mean coordination number, indicating that there exists an optimal network connectivity at which fluid flow is maximum. These results have been central to understand how fluid flows in natural reservoir rocks. The permeability variations versus frequency, fluid rheology, and pore connectivity provide key information of reservoir fluid properties and pore network structure. The results indicate that it is questionable whether Darcy static permeability can be applied at high frequencies.
Key Points
We study how fluid rheology and pore connectivity affect the permeability of pore networks
Fluid rheology has a significant effect on permeability; peaks are observed on permeability‐frequency curves for a Maxwell fluid
Pore‐network connectivity plays a key role, since the pore radius and mean coordination number lead to permeability variations for the same porosity |
doi_str_mv | 10.1029/2019JB018857 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000530895800013CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383118390</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3305-258d20a94eec80493a01584fae33584f7a24f11e7b69011e2d58197e8abc4463</originalsourceid><addsrcrecordid>eNqNkEFPAjEQhRujiQS5-QOaeFS03bbQHmUDKEElhKvZlN1ZLSxbbBfJ_nu7gRBPxrm8ycz3ps1D6JqSe0oi9RARqiYDQqUU_TPUimhPdRUTvfNTT9kl6ni_IqFkGFHeQu_DPIe08tjmeFTsTIbnn2AL-1FjXWZ4Zh3g2JZlYMy3qWpsSzy36RrPwG1AL03RDAfaQ9asNH6Fam_dGr_YDIordJHrwkPnqG20GA0X8VN3-jZ-jh-nXc0YEd1IyCwiWnGAVBKumCZUSJ5rYKzRvo54Tin0lz1FgkaZkFT1QeplynmPtdHN4ezW2a8d-CpZ2Z0rw4tJxCSjVDJFAnV3oFJnvXeQJ1tnNtrVCSVJE2HyO8KAywO-h6XNfWqgTOFkCREKRqQSMnSUxabSlbFlbHdlFay3_7cGmh1pU0D956eSyXg-EJxwwX4Ahk6QyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383118390</pqid></control><display><type>article</type><title>Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Wiley Online Library (Open Access Collection)</source><creator>Xiong, Fansheng ; Sun, Weitao ; Ba, Jing ; Carcione, José M.</creator><creatorcontrib>Xiong, Fansheng ; Sun, Weitao ; Ba, Jing ; Carcione, José M.</creatorcontrib><description>Permeability is an important rock property in exploration geophysics. Darcy's law assumes a steady‐state regime and constant permeability. However, recent studies showed that the effects of fluid viscosity and pore geometry on permeability cannot be neglected. The periodic variation of pore fluid pressure gradient due to elastic wave propagation induces the oscillated fluid flow. We consider a Maxwell fluid in a 3‐D pore network subject to harmonic oscillations. The network is based on the Voronoi method, which provides a realistic connectivity. The permeability of polyethylene oxide and cetylpyridinium chloride and sodium salicylate solution have been simulated. The results show that permeability is constant at frequencies less than several kHz and rapidly decreases to extremely low values as frequency tends to infinite. In addition, we find that fluid mainly flows in sparse‐large pore networks at low frequencies and in dense‐small pore networks at high frequencies. The Maxwell fluid shows significant permeability peaks related to the mean coordination number, indicating that there exists an optimal network connectivity at which fluid flow is maximum. These results have been central to understand how fluid flows in natural reservoir rocks. The permeability variations versus frequency, fluid rheology, and pore connectivity provide key information of reservoir fluid properties and pore network structure. The results indicate that it is questionable whether Darcy static permeability can be applied at high frequencies.
Key Points
We study how fluid rheology and pore connectivity affect the permeability of pore networks
Fluid rheology has a significant effect on permeability; peaks are observed on permeability‐frequency curves for a Maxwell fluid
Pore‐network connectivity plays a key role, since the pore radius and mean coordination number lead to permeability variations for the same porosity</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2019JB018857</identifier><language>eng</language><publisher>WASHINGTON: Amer Geophysical Union</publisher><subject>Cetylpyridinium chloride ; Computational fluid dynamics ; Computer simulation ; Connectivity ; Coordination numbers ; Darcy's law ; Darcys law ; Elastic waves ; Exploration ; Extreme values ; Fluid flow ; Fluid pressure ; frequency‐dependent permeability ; Geochemistry & Geophysics ; Geophysics ; Harmonic oscillation ; High frequencies ; Maxwell fluid ; Maxwell fluids ; Membrane permeability ; Oscillations ; Periodic variations ; Permeability ; Physical Sciences ; Polyethylene ; Polyethylene oxide ; Pressure gradients ; random pore network ; Reservoirs ; Rheological properties ; Rheology ; Rock properties ; Rocks ; Salicylic acid ; Science & Technology ; Sodium ; Sodium salicylate ; Sodium salicylates ; Viscosity ; Wave propagation</subject><ispartof>Journal of geophysical research. Solid earth, 2020-03, Vol.125 (3), p.no-no, Article 2019</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000530895800013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a3305-258d20a94eec80493a01584fae33584f7a24f11e7b69011e2d58197e8abc4463</citedby><cites>FETCH-LOGICAL-a3305-258d20a94eec80493a01584fae33584f7a24f11e7b69011e2d58197e8abc4463</cites><orcidid>0000-0002-2839-705X ; 0000-0002-9861-0186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019JB018857$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019JB018857$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27929,27930,28253,45579,45580,46414,46838</link.rule.ids></links><search><creatorcontrib>Xiong, Fansheng</creatorcontrib><creatorcontrib>Sun, Weitao</creatorcontrib><creatorcontrib>Ba, Jing</creatorcontrib><creatorcontrib>Carcione, José M.</creatorcontrib><title>Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model</title><title>Journal of geophysical research. Solid earth</title><addtitle>J GEOPHYS RES-SOL EA</addtitle><description>Permeability is an important rock property in exploration geophysics. Darcy's law assumes a steady‐state regime and constant permeability. However, recent studies showed that the effects of fluid viscosity and pore geometry on permeability cannot be neglected. The periodic variation of pore fluid pressure gradient due to elastic wave propagation induces the oscillated fluid flow. We consider a Maxwell fluid in a 3‐D pore network subject to harmonic oscillations. The network is based on the Voronoi method, which provides a realistic connectivity. The permeability of polyethylene oxide and cetylpyridinium chloride and sodium salicylate solution have been simulated. The results show that permeability is constant at frequencies less than several kHz and rapidly decreases to extremely low values as frequency tends to infinite. In addition, we find that fluid mainly flows in sparse‐large pore networks at low frequencies and in dense‐small pore networks at high frequencies. The Maxwell fluid shows significant permeability peaks related to the mean coordination number, indicating that there exists an optimal network connectivity at which fluid flow is maximum. These results have been central to understand how fluid flows in natural reservoir rocks. The permeability variations versus frequency, fluid rheology, and pore connectivity provide key information of reservoir fluid properties and pore network structure. The results indicate that it is questionable whether Darcy static permeability can be applied at high frequencies.
Key Points
We study how fluid rheology and pore connectivity affect the permeability of pore networks
Fluid rheology has a significant effect on permeability; peaks are observed on permeability‐frequency curves for a Maxwell fluid
Pore‐network connectivity plays a key role, since the pore radius and mean coordination number lead to permeability variations for the same porosity</description><subject>Cetylpyridinium chloride</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Connectivity</subject><subject>Coordination numbers</subject><subject>Darcy's law</subject><subject>Darcys law</subject><subject>Elastic waves</subject><subject>Exploration</subject><subject>Extreme values</subject><subject>Fluid flow</subject><subject>Fluid pressure</subject><subject>frequency‐dependent permeability</subject><subject>Geochemistry & Geophysics</subject><subject>Geophysics</subject><subject>Harmonic oscillation</subject><subject>High frequencies</subject><subject>Maxwell fluid</subject><subject>Maxwell fluids</subject><subject>Membrane permeability</subject><subject>Oscillations</subject><subject>Periodic variations</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Polyethylene</subject><subject>Polyethylene oxide</subject><subject>Pressure gradients</subject><subject>random pore network</subject><subject>Reservoirs</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Rock properties</subject><subject>Rocks</subject><subject>Salicylic acid</subject><subject>Science & Technology</subject><subject>Sodium</subject><subject>Sodium salicylate</subject><subject>Sodium salicylates</subject><subject>Viscosity</subject><subject>Wave propagation</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkEFPAjEQhRujiQS5-QOaeFS03bbQHmUDKEElhKvZlN1ZLSxbbBfJ_nu7gRBPxrm8ycz3ps1D6JqSe0oi9RARqiYDQqUU_TPUimhPdRUTvfNTT9kl6ni_IqFkGFHeQu_DPIe08tjmeFTsTIbnn2AL-1FjXWZ4Zh3g2JZlYMy3qWpsSzy36RrPwG1AL03RDAfaQ9asNH6Fam_dGr_YDIordJHrwkPnqG20GA0X8VN3-jZ-jh-nXc0YEd1IyCwiWnGAVBKumCZUSJ5rYKzRvo54Tin0lz1FgkaZkFT1QeplynmPtdHN4ezW2a8d-CpZ2Z0rw4tJxCSjVDJFAnV3oFJnvXeQJ1tnNtrVCSVJE2HyO8KAywO-h6XNfWqgTOFkCREKRqQSMnSUxabSlbFlbHdlFay3_7cGmh1pU0D956eSyXg-EJxwwX4Ahk6QyA</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Xiong, Fansheng</creator><creator>Sun, Weitao</creator><creator>Ba, Jing</creator><creator>Carcione, José M.</creator><general>Amer Geophysical Union</general><general>Blackwell Publishing Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2839-705X</orcidid><orcidid>https://orcid.org/0000-0002-9861-0186</orcidid></search><sort><creationdate>202003</creationdate><title>Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model</title><author>Xiong, Fansheng ; Sun, Weitao ; Ba, Jing ; Carcione, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3305-258d20a94eec80493a01584fae33584f7a24f11e7b69011e2d58197e8abc4463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cetylpyridinium chloride</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Connectivity</topic><topic>Coordination numbers</topic><topic>Darcy's law</topic><topic>Darcys law</topic><topic>Elastic waves</topic><topic>Exploration</topic><topic>Extreme values</topic><topic>Fluid flow</topic><topic>Fluid pressure</topic><topic>frequency‐dependent permeability</topic><topic>Geochemistry & Geophysics</topic><topic>Geophysics</topic><topic>Harmonic oscillation</topic><topic>High frequencies</topic><topic>Maxwell fluid</topic><topic>Maxwell fluids</topic><topic>Membrane permeability</topic><topic>Oscillations</topic><topic>Periodic variations</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Polyethylene</topic><topic>Polyethylene oxide</topic><topic>Pressure gradients</topic><topic>random pore network</topic><topic>Reservoirs</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Rock properties</topic><topic>Rocks</topic><topic>Salicylic acid</topic><topic>Science & Technology</topic><topic>Sodium</topic><topic>Sodium salicylate</topic><topic>Sodium salicylates</topic><topic>Viscosity</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Fansheng</creatorcontrib><creatorcontrib>Sun, Weitao</creatorcontrib><creatorcontrib>Ba, Jing</creatorcontrib><creatorcontrib>Carcione, José M.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Fansheng</au><au>Sun, Weitao</au><au>Ba, Jing</au><au>Carcione, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><stitle>J GEOPHYS RES-SOL EA</stitle><date>2020-03</date><risdate>2020</risdate><volume>125</volume><issue>3</issue><spage>no</spage><epage>no</epage><pages>no-no</pages><artnum>2019</artnum><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Permeability is an important rock property in exploration geophysics. Darcy's law assumes a steady‐state regime and constant permeability. However, recent studies showed that the effects of fluid viscosity and pore geometry on permeability cannot be neglected. The periodic variation of pore fluid pressure gradient due to elastic wave propagation induces the oscillated fluid flow. We consider a Maxwell fluid in a 3‐D pore network subject to harmonic oscillations. The network is based on the Voronoi method, which provides a realistic connectivity. The permeability of polyethylene oxide and cetylpyridinium chloride and sodium salicylate solution have been simulated. The results show that permeability is constant at frequencies less than several kHz and rapidly decreases to extremely low values as frequency tends to infinite. In addition, we find that fluid mainly flows in sparse‐large pore networks at low frequencies and in dense‐small pore networks at high frequencies. The Maxwell fluid shows significant permeability peaks related to the mean coordination number, indicating that there exists an optimal network connectivity at which fluid flow is maximum. These results have been central to understand how fluid flows in natural reservoir rocks. The permeability variations versus frequency, fluid rheology, and pore connectivity provide key information of reservoir fluid properties and pore network structure. The results indicate that it is questionable whether Darcy static permeability can be applied at high frequencies.
Key Points
We study how fluid rheology and pore connectivity affect the permeability of pore networks
Fluid rheology has a significant effect on permeability; peaks are observed on permeability‐frequency curves for a Maxwell fluid
Pore‐network connectivity plays a key role, since the pore radius and mean coordination number lead to permeability variations for the same porosity</abstract><cop>WASHINGTON</cop><pub>Amer Geophysical Union</pub><doi>10.1029/2019JB018857</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2839-705X</orcidid><orcidid>https://orcid.org/0000-0002-9861-0186</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2020-03, Vol.125 (3), p.no-no, Article 2019 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_webofscience_primary_000530895800013CitationCount |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection) |
subjects | Cetylpyridinium chloride Computational fluid dynamics Computer simulation Connectivity Coordination numbers Darcy's law Darcys law Elastic waves Exploration Extreme values Fluid flow Fluid pressure frequency‐dependent permeability Geochemistry & Geophysics Geophysics Harmonic oscillation High frequencies Maxwell fluid Maxwell fluids Membrane permeability Oscillations Periodic variations Permeability Physical Sciences Polyethylene Polyethylene oxide Pressure gradients random pore network Reservoirs Rheological properties Rheology Rock properties Rocks Salicylic acid Science & Technology Sodium Sodium salicylate Sodium salicylates Viscosity Wave propagation |
title | Effects of Fluid Rheology and Pore Connectivity on Rock Permeability Based on a Network Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Fluid%20Rheology%20and%20Pore%20Connectivity%20on%20Rock%20Permeability%20Based%20on%20a%20Network%20Model&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Xiong,%20Fansheng&rft.date=2020-03&rft.volume=125&rft.issue=3&rft.spage=no&rft.epage=no&rft.pages=no-no&rft.artnum=2019&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2019JB018857&rft_dat=%3Cproquest_webof%3E2383118390%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383118390&rft_id=info:pmid/&rfr_iscdi=true |