Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition

Boron‐doped diamond layers are grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. Due to the high crystallinity and atomically flat su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2020-06, Vol.217 (12), p.n/a
Hauptverfasser: Kwak, Taemyung, Lee, Jonggun, Yoo, Geunho, Shin, Heejin, Choi, Uiho, So, Byeongchan, Kim, Seongwoo, Nam, Okhyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Boron‐doped diamond layers are grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material. Due to the high crystallinity and atomically flat surface morphology of the substrate, the MPCVD‐grown boron‐doped diamond layer exhibit excellent surface properties and crystallinity, as measured by X‐ray diffraction and atomic force microscopy. The temperature‐dependent Hall effect measurements are conducted at temperature ranges between 300–800 K with cloverleaf‐shaped van der Pauw geometry. The hole concentration of boron‐doped diamond samples is between 1.1 × 1015 and 5 × 1019 cm−3 at room temperature, and the resistivity is controlled between 10−1 and 20 Ω cm by changing boron to carbon ratio. A specific contact resistance as low as 1.41 × 10−4 Ω cm2 is obtained via annealing at 500 °C. The activation energy of the boron‐doped diamond layers is reduced from 0.35 to 0.12 eV as the amount of boron dopant increases, which is attributed to the formation of impurity band. Finally, the change in the carrier mobility of boron‐doped heteroepitaxial diamond is discussed based on the scattering mechanism. Herein, it is demonstrated that boron‐doped diamond layer is grown on freestanding heteroepitaxial diamond substrates by microwave plasma chemical vapor deposition (MPCVD) to verify the high potential of large‐size heteroepitaxial diamond as an ultimate semiconductor material.
ISSN:1862-6300
1862-6319
DOI:10.1002/pssa.201900973