Heron triangles and their elliptic curves
In geometry, a Heron triangle is a triangle with rational side lengths and integral area. We investigate Heron triangles and their elliptic curves. In particular, we provide some new results concerning Heron triangles and give elementary proofs for some results concerning Heronian elliptic curves.
Gespeichert in:
Veröffentlicht in: | Journal of number theory 2020-08, Vol.213, p.232-253 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | |
container_start_page | 232 |
container_title | Journal of number theory |
container_volume | 213 |
creator | Halbeisen, Lorenz Hungerbühler, Norbert |
description | In geometry, a Heron triangle is a triangle with rational side lengths and integral area. We investigate Heron triangles and their elliptic curves. In particular, we provide some new results concerning Heron triangles and give elementary proofs for some results concerning Heronian elliptic curves. |
doi_str_mv | 10.1016/j.jnt.2019.12.005 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000530034400009CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022314X20300135</els_id><sourcerecordid>S0022314X20300135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-edd25538e9f3ab6d67dd97975e9356672298e1f457284ed007e5b07a86cb6b9e3</originalsourceid><addsrcrecordid>eNqNkMFKxDAQhoMouK4-gLdeRVonaZM0eJKirrDgRcFbaJOpptR2SbIrvr1dungUTzOH_xvm-wm5pJBRoOKmy7ohZgyoyijLAPgRWVBQIqWCl8dkAcBYmtPi7ZSchdABUMolX5CrFfpxSKJ39fDeY0jqwSbxA51PsO_dJjqTmK3fYTgnJ23dB7w4zCV5fbh_qVbp-vnxqbpbp4YpGVO0lnGel6javG6EFdJaJZXkqHIuhGRMlUjbgktWFmgBJPIGZF0K04hGYb4kdL5r_BiCx1ZvvPus_bemoPeuutOTq967asr05Dox5cx8YTO2wTgcDP5ysI8A5EUxbaAqF-voxqEat0Oc0Ov_o1P6dk7j1MDOodcHwjqPJmo7uj_e_AErs3xK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heron triangles and their elliptic curves</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Halbeisen, Lorenz ; Hungerbühler, Norbert</creator><creatorcontrib>Halbeisen, Lorenz ; Hungerbühler, Norbert</creatorcontrib><description>In geometry, a Heron triangle is a triangle with rational side lengths and integral area. We investigate Heron triangles and their elliptic curves. In particular, we provide some new results concerning Heron triangles and give elementary proofs for some results concerning Heronian elliptic curves.</description><identifier>ISSN: 0022-314X</identifier><identifier>EISSN: 1096-1658</identifier><identifier>DOI: 10.1016/j.jnt.2019.12.005</identifier><language>eng</language><publisher>SAN DIEGO: Elsevier Inc</publisher><subject>Congruent numbers ; Heron triangles ; Heronian elliptic curves ; Mathematics ; Physical Sciences ; Science & Technology ; θ-triangles</subject><ispartof>Journal of number theory, 2020-08, Vol.213, p.232-253</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000530034400009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c297t-edd25538e9f3ab6d67dd97975e9356672298e1f457284ed007e5b07a86cb6b9e3</citedby><cites>FETCH-LOGICAL-c297t-edd25538e9f3ab6d67dd97975e9356672298e1f457284ed007e5b07a86cb6b9e3</cites><orcidid>0000-0001-6191-0022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnt.2019.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Halbeisen, Lorenz</creatorcontrib><creatorcontrib>Hungerbühler, Norbert</creatorcontrib><title>Heron triangles and their elliptic curves</title><title>Journal of number theory</title><addtitle>J NUMBER THEORY</addtitle><description>In geometry, a Heron triangle is a triangle with rational side lengths and integral area. We investigate Heron triangles and their elliptic curves. In particular, we provide some new results concerning Heron triangles and give elementary proofs for some results concerning Heronian elliptic curves.</description><subject>Congruent numbers</subject><subject>Heron triangles</subject><subject>Heronian elliptic curves</subject><subject>Mathematics</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>θ-triangles</subject><issn>0022-314X</issn><issn>1096-1658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMFKxDAQhoMouK4-gLdeRVonaZM0eJKirrDgRcFbaJOpptR2SbIrvr1dungUTzOH_xvm-wm5pJBRoOKmy7ohZgyoyijLAPgRWVBQIqWCl8dkAcBYmtPi7ZSchdABUMolX5CrFfpxSKJ39fDeY0jqwSbxA51PsO_dJjqTmK3fYTgnJ23dB7w4zCV5fbh_qVbp-vnxqbpbp4YpGVO0lnGel6javG6EFdJaJZXkqHIuhGRMlUjbgktWFmgBJPIGZF0K04hGYb4kdL5r_BiCx1ZvvPus_bemoPeuutOTq967asr05Dox5cx8YTO2wTgcDP5ysI8A5EUxbaAqF-voxqEat0Oc0Ov_o1P6dk7j1MDOodcHwjqPJmo7uj_e_AErs3xK</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Halbeisen, Lorenz</creator><creator>Hungerbühler, Norbert</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6191-0022</orcidid></search><sort><creationdate>202008</creationdate><title>Heron triangles and their elliptic curves</title><author>Halbeisen, Lorenz ; Hungerbühler, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-edd25538e9f3ab6d67dd97975e9356672298e1f457284ed007e5b07a86cb6b9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Congruent numbers</topic><topic>Heron triangles</topic><topic>Heronian elliptic curves</topic><topic>Mathematics</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>θ-triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halbeisen, Lorenz</creatorcontrib><creatorcontrib>Hungerbühler, Norbert</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Journal of number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halbeisen, Lorenz</au><au>Hungerbühler, Norbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heron triangles and their elliptic curves</atitle><jtitle>Journal of number theory</jtitle><stitle>J NUMBER THEORY</stitle><date>2020-08</date><risdate>2020</risdate><volume>213</volume><spage>232</spage><epage>253</epage><pages>232-253</pages><issn>0022-314X</issn><eissn>1096-1658</eissn><abstract>In geometry, a Heron triangle is a triangle with rational side lengths and integral area. We investigate Heron triangles and their elliptic curves. In particular, we provide some new results concerning Heron triangles and give elementary proofs for some results concerning Heronian elliptic curves.</abstract><cop>SAN DIEGO</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jnt.2019.12.005</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6191-0022</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-314X |
ispartof | Journal of number theory, 2020-08, Vol.213, p.232-253 |
issn | 0022-314X 1096-1658 |
language | eng |
recordid | cdi_webofscience_primary_000530034400009CitationCount |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Congruent numbers Heron triangles Heronian elliptic curves Mathematics Physical Sciences Science & Technology θ-triangles |
title | Heron triangles and their elliptic curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heron%20triangles%20and%20their%20elliptic%20curves&rft.jtitle=Journal%20of%20number%20theory&rft.au=Halbeisen,%20Lorenz&rft.date=2020-08&rft.volume=213&rft.spage=232&rft.epage=253&rft.pages=232-253&rft.issn=0022-314X&rft.eissn=1096-1658&rft_id=info:doi/10.1016/j.jnt.2019.12.005&rft_dat=%3Celsevier_webof%3ES0022314X20300135%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022314X20300135&rfr_iscdi=true |