Heron triangles and their elliptic curves

In geometry, a Heron triangle is a triangle with rational side lengths and integral area. We investigate Heron triangles and their elliptic curves. In particular, we provide some new results concerning Heron triangles and give elementary proofs for some results concerning Heronian elliptic curves.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory 2020-08, Vol.213, p.232-253
Hauptverfasser: Halbeisen, Lorenz, Hungerbühler, Norbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue
container_start_page 232
container_title Journal of number theory
container_volume 213
creator Halbeisen, Lorenz
Hungerbühler, Norbert
description In geometry, a Heron triangle is a triangle with rational side lengths and integral area. We investigate Heron triangles and their elliptic curves. In particular, we provide some new results concerning Heron triangles and give elementary proofs for some results concerning Heronian elliptic curves.
doi_str_mv 10.1016/j.jnt.2019.12.005
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000530034400009CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022314X20300135</els_id><sourcerecordid>S0022314X20300135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-edd25538e9f3ab6d67dd97975e9356672298e1f457284ed007e5b07a86cb6b9e3</originalsourceid><addsrcrecordid>eNqNkMFKxDAQhoMouK4-gLdeRVonaZM0eJKirrDgRcFbaJOpptR2SbIrvr1dungUTzOH_xvm-wm5pJBRoOKmy7ohZgyoyijLAPgRWVBQIqWCl8dkAcBYmtPi7ZSchdABUMolX5CrFfpxSKJ39fDeY0jqwSbxA51PsO_dJjqTmK3fYTgnJ23dB7w4zCV5fbh_qVbp-vnxqbpbp4YpGVO0lnGel6javG6EFdJaJZXkqHIuhGRMlUjbgktWFmgBJPIGZF0K04hGYb4kdL5r_BiCx1ZvvPus_bemoPeuutOTq967asr05Dox5cx8YTO2wTgcDP5ysI8A5EUxbaAqF-voxqEat0Oc0Ov_o1P6dk7j1MDOodcHwjqPJmo7uj_e_AErs3xK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heron triangles and their elliptic curves</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Halbeisen, Lorenz ; Hungerbühler, Norbert</creator><creatorcontrib>Halbeisen, Lorenz ; Hungerbühler, Norbert</creatorcontrib><description>In geometry, a Heron triangle is a triangle with rational side lengths and integral area. We investigate Heron triangles and their elliptic curves. In particular, we provide some new results concerning Heron triangles and give elementary proofs for some results concerning Heronian elliptic curves.</description><identifier>ISSN: 0022-314X</identifier><identifier>EISSN: 1096-1658</identifier><identifier>DOI: 10.1016/j.jnt.2019.12.005</identifier><language>eng</language><publisher>SAN DIEGO: Elsevier Inc</publisher><subject>Congruent numbers ; Heron triangles ; Heronian elliptic curves ; Mathematics ; Physical Sciences ; Science &amp; Technology ; θ-triangles</subject><ispartof>Journal of number theory, 2020-08, Vol.213, p.232-253</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000530034400009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c297t-edd25538e9f3ab6d67dd97975e9356672298e1f457284ed007e5b07a86cb6b9e3</citedby><cites>FETCH-LOGICAL-c297t-edd25538e9f3ab6d67dd97975e9356672298e1f457284ed007e5b07a86cb6b9e3</cites><orcidid>0000-0001-6191-0022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnt.2019.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Halbeisen, Lorenz</creatorcontrib><creatorcontrib>Hungerbühler, Norbert</creatorcontrib><title>Heron triangles and their elliptic curves</title><title>Journal of number theory</title><addtitle>J NUMBER THEORY</addtitle><description>In geometry, a Heron triangle is a triangle with rational side lengths and integral area. We investigate Heron triangles and their elliptic curves. In particular, we provide some new results concerning Heron triangles and give elementary proofs for some results concerning Heronian elliptic curves.</description><subject>Congruent numbers</subject><subject>Heron triangles</subject><subject>Heronian elliptic curves</subject><subject>Mathematics</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>θ-triangles</subject><issn>0022-314X</issn><issn>1096-1658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMFKxDAQhoMouK4-gLdeRVonaZM0eJKirrDgRcFbaJOpptR2SbIrvr1dungUTzOH_xvm-wm5pJBRoOKmy7ohZgyoyijLAPgRWVBQIqWCl8dkAcBYmtPi7ZSchdABUMolX5CrFfpxSKJ39fDeY0jqwSbxA51PsO_dJjqTmK3fYTgnJ23dB7w4zCV5fbh_qVbp-vnxqbpbp4YpGVO0lnGel6javG6EFdJaJZXkqHIuhGRMlUjbgktWFmgBJPIGZF0K04hGYb4kdL5r_BiCx1ZvvPus_bemoPeuutOTq967asr05Dox5cx8YTO2wTgcDP5ysI8A5EUxbaAqF-voxqEat0Oc0Ov_o1P6dk7j1MDOodcHwjqPJmo7uj_e_AErs3xK</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Halbeisen, Lorenz</creator><creator>Hungerbühler, Norbert</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6191-0022</orcidid></search><sort><creationdate>202008</creationdate><title>Heron triangles and their elliptic curves</title><author>Halbeisen, Lorenz ; Hungerbühler, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-edd25538e9f3ab6d67dd97975e9356672298e1f457284ed007e5b07a86cb6b9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Congruent numbers</topic><topic>Heron triangles</topic><topic>Heronian elliptic curves</topic><topic>Mathematics</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>θ-triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halbeisen, Lorenz</creatorcontrib><creatorcontrib>Hungerbühler, Norbert</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Journal of number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halbeisen, Lorenz</au><au>Hungerbühler, Norbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heron triangles and their elliptic curves</atitle><jtitle>Journal of number theory</jtitle><stitle>J NUMBER THEORY</stitle><date>2020-08</date><risdate>2020</risdate><volume>213</volume><spage>232</spage><epage>253</epage><pages>232-253</pages><issn>0022-314X</issn><eissn>1096-1658</eissn><abstract>In geometry, a Heron triangle is a triangle with rational side lengths and integral area. We investigate Heron triangles and their elliptic curves. In particular, we provide some new results concerning Heron triangles and give elementary proofs for some results concerning Heronian elliptic curves.</abstract><cop>SAN DIEGO</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jnt.2019.12.005</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6191-0022</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-314X
ispartof Journal of number theory, 2020-08, Vol.213, p.232-253
issn 0022-314X
1096-1658
language eng
recordid cdi_webofscience_primary_000530034400009CitationCount
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Congruent numbers
Heron triangles
Heronian elliptic curves
Mathematics
Physical Sciences
Science & Technology
θ-triangles
title Heron triangles and their elliptic curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heron%20triangles%20and%20their%20elliptic%20curves&rft.jtitle=Journal%20of%20number%20theory&rft.au=Halbeisen,%20Lorenz&rft.date=2020-08&rft.volume=213&rft.spage=232&rft.epage=253&rft.pages=232-253&rft.issn=0022-314X&rft.eissn=1096-1658&rft_id=info:doi/10.1016/j.jnt.2019.12.005&rft_dat=%3Celsevier_webof%3ES0022314X20300135%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022314X20300135&rfr_iscdi=true