Initiated Chemical Vapor Deposition of Graded Polymer Coatings Enabling Antibacterial, Antifouling, and Biocompatible Surfaces

We report initiated chemical vapor deposition of model-graded polymer coatings enabling antibacterial, antifouling, and biocompatible surfaces. The graded coating was constructed by a bottom layer consisting of bactericidal poly­(dimethyl amino methyl styrene) and a surface layer consisting of both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-04, Vol.12 (16), p.18978-18986
Hauptverfasser: Su, Cuicui, Hu, Yiqi, Song, Qing, Ye, Yumin, Gao, Lingling, Li, Peng, Ye, Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18986
container_issue 16
container_start_page 18978
container_title ACS applied materials & interfaces
container_volume 12
creator Su, Cuicui
Hu, Yiqi
Song, Qing
Ye, Yumin
Gao, Lingling
Li, Peng
Ye, Ting
description We report initiated chemical vapor deposition of model-graded polymer coatings enabling antibacterial, antifouling, and biocompatible surfaces. The graded coating was constructed by a bottom layer consisting of bactericidal poly­(dimethyl amino methyl styrene) and a surface layer consisting of both dimethyl amino methyl styrene (DMAMS) and hydrophilic vinyl pyrrolidone (VP) moieties. Fourier transform infrared spectra showed existence of both DMAMS and VP in the coating with DMAMS as the major component, while X-ray photoelectron spectroscopy analysis and water contact angle measurement revealed a VP-enriched coating surface. The resultant coating exhibited more than 99.9% killing rate against both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis despite the incorporation of VP on the surface. We believe that such bactericidal capability resulted because of its high surface zeta potential, which could be originated from the DMAMS units distributed both on the top surface and underneath. The graded coating achieved more than 85% bacterial fouling resistance than the pristine substrate, as well as improved biocompatibility, owing to the abundant surface lactam groups from the VP moiety. Furthermore, the graded coating maintained good bactericidal capability after multicycle challenges of bacterial solutions and was durable against continuous rigorous washing, suggesting potential applications in biomedical devices.
doi_str_mv 10.1021/acsami.9b22611
format Article
fullrecord <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000529202100082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a367068417</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-4fcf12d663134e3fb15a512544ab44e7f582e4a17c6f1f866c96a765e36cef63</originalsourceid><addsrcrecordid>eNqNkE1P3DAQhq2qqHyUa4-Vz2V38Ve82SMECkgrUamIazRxxq1RYkd2IsSlv73ehu4NiZNfa553NHoI-cLZijPBz8Ek6N1q0wihOf9AjvhGqWUpCvFxn5U6JMcpPTGmpWDFJ3IoheBCr_kR-XPn3ehgxJZWv7F3Bjr6CEOI9AqHkPIseBosvYnQZuZH6F56jLQKMDr_K9FrD02XE73wo2vAjBgddIt_Xxum3WhBwbf00gUT-iHXmg7pzylaMJg-kwMLXcLT1_eEPHy_fqhul9v7m7vqYrsEKdm4VNZYLlqtJZcKpW14AQUXhVLQKIVrW5QCFfC10ZbbUmuz0bDWBUpt0Gp5QlbzWhNDShFtPUTXQ3ypOat3HuvZY_3qMRe-zoVhanps9_h_cRk4m4FnbIJNxqE3uMcYY4XYiLw4p1Jkunw_XbkRdtqrMPkxV7_N1Xxh_RSm6LOnt87-C1dFn70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Initiated Chemical Vapor Deposition of Graded Polymer Coatings Enabling Antibacterial, Antifouling, and Biocompatible Surfaces</title><source>American Chemical Society</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Su, Cuicui ; Hu, Yiqi ; Song, Qing ; Ye, Yumin ; Gao, Lingling ; Li, Peng ; Ye, Ting</creator><creatorcontrib>Su, Cuicui ; Hu, Yiqi ; Song, Qing ; Ye, Yumin ; Gao, Lingling ; Li, Peng ; Ye, Ting</creatorcontrib><description>We report initiated chemical vapor deposition of model-graded polymer coatings enabling antibacterial, antifouling, and biocompatible surfaces. The graded coating was constructed by a bottom layer consisting of bactericidal poly­(dimethyl amino methyl styrene) and a surface layer consisting of both dimethyl amino methyl styrene (DMAMS) and hydrophilic vinyl pyrrolidone (VP) moieties. Fourier transform infrared spectra showed existence of both DMAMS and VP in the coating with DMAMS as the major component, while X-ray photoelectron spectroscopy analysis and water contact angle measurement revealed a VP-enriched coating surface. The resultant coating exhibited more than 99.9% killing rate against both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis despite the incorporation of VP on the surface. We believe that such bactericidal capability resulted because of its high surface zeta potential, which could be originated from the DMAMS units distributed both on the top surface and underneath. The graded coating achieved more than 85% bacterial fouling resistance than the pristine substrate, as well as improved biocompatibility, owing to the abundant surface lactam groups from the VP moiety. Furthermore, the graded coating maintained good bactericidal capability after multicycle challenges of bacterial solutions and was durable against continuous rigorous washing, suggesting potential applications in biomedical devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b22611</identifier><identifier>PMID: 32212671</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Anti-Bacterial Agents - toxicity ; Bacteria - drug effects ; Cell Line ; Cell Survival - drug effects ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Coated Materials, Biocompatible - toxicity ; Equipment Reuse ; Gases - chemistry ; Humans ; Materials Science ; Materials Science, Multidisciplinary ; Microbial Viability - drug effects ; Nanoscience &amp; Nanotechnology ; Polymers - chemistry ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>ACS applied materials &amp; interfaces, 2020-04, Vol.12 (16), p.18978-18986</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>50</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000529202100082</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a330t-4fcf12d663134e3fb15a512544ab44e7f582e4a17c6f1f866c96a765e36cef63</citedby><cites>FETCH-LOGICAL-a330t-4fcf12d663134e3fb15a512544ab44e7f582e4a17c6f1f866c96a765e36cef63</cites><orcidid>0000-0002-5876-2177 ; 0000-0001-8263-045X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b22611$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b22611$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,28253,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32212671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Cuicui</creatorcontrib><creatorcontrib>Hu, Yiqi</creatorcontrib><creatorcontrib>Song, Qing</creatorcontrib><creatorcontrib>Ye, Yumin</creatorcontrib><creatorcontrib>Gao, Lingling</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Ye, Ting</creatorcontrib><title>Initiated Chemical Vapor Deposition of Graded Polymer Coatings Enabling Antibacterial, Antifouling, and Biocompatible Surfaces</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS APPL MATER INTER</addtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We report initiated chemical vapor deposition of model-graded polymer coatings enabling antibacterial, antifouling, and biocompatible surfaces. The graded coating was constructed by a bottom layer consisting of bactericidal poly­(dimethyl amino methyl styrene) and a surface layer consisting of both dimethyl amino methyl styrene (DMAMS) and hydrophilic vinyl pyrrolidone (VP) moieties. Fourier transform infrared spectra showed existence of both DMAMS and VP in the coating with DMAMS as the major component, while X-ray photoelectron spectroscopy analysis and water contact angle measurement revealed a VP-enriched coating surface. The resultant coating exhibited more than 99.9% killing rate against both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis despite the incorporation of VP on the surface. We believe that such bactericidal capability resulted because of its high surface zeta potential, which could be originated from the DMAMS units distributed both on the top surface and underneath. The graded coating achieved more than 85% bacterial fouling resistance than the pristine substrate, as well as improved biocompatibility, owing to the abundant surface lactam groups from the VP moiety. Furthermore, the graded coating maintained good bactericidal capability after multicycle challenges of bacterial solutions and was durable against continuous rigorous washing, suggesting potential applications in biomedical devices.</description><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-Bacterial Agents - toxicity</subject><subject>Bacteria - drug effects</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Coated Materials, Biocompatible - toxicity</subject><subject>Equipment Reuse</subject><subject>Gases - chemistry</subject><subject>Humans</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Microbial Viability - drug effects</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Polymers - chemistry</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkE1P3DAQhq2qqHyUa4-Vz2V38Ve82SMECkgrUamIazRxxq1RYkd2IsSlv73ehu4NiZNfa553NHoI-cLZijPBz8Ek6N1q0wihOf9AjvhGqWUpCvFxn5U6JMcpPTGmpWDFJ3IoheBCr_kR-XPn3ehgxJZWv7F3Bjr6CEOI9AqHkPIseBosvYnQZuZH6F56jLQKMDr_K9FrD02XE73wo2vAjBgddIt_Xxum3WhBwbf00gUT-iHXmg7pzylaMJg-kwMLXcLT1_eEPHy_fqhul9v7m7vqYrsEKdm4VNZYLlqtJZcKpW14AQUXhVLQKIVrW5QCFfC10ZbbUmuz0bDWBUpt0Gp5QlbzWhNDShFtPUTXQ3ypOat3HuvZY_3qMRe-zoVhanps9_h_cRk4m4FnbIJNxqE3uMcYY4XYiLw4p1Jkunw_XbkRdtqrMPkxV7_N1Xxh_RSm6LOnt87-C1dFn70</recordid><startdate>20200422</startdate><enddate>20200422</enddate><creator>Su, Cuicui</creator><creator>Hu, Yiqi</creator><creator>Song, Qing</creator><creator>Ye, Yumin</creator><creator>Gao, Lingling</creator><creator>Li, Peng</creator><creator>Ye, Ting</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5876-2177</orcidid><orcidid>https://orcid.org/0000-0001-8263-045X</orcidid></search><sort><creationdate>20200422</creationdate><title>Initiated Chemical Vapor Deposition of Graded Polymer Coatings Enabling Antibacterial, Antifouling, and Biocompatible Surfaces</title><author>Su, Cuicui ; Hu, Yiqi ; Song, Qing ; Ye, Yumin ; Gao, Lingling ; Li, Peng ; Ye, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-4fcf12d663134e3fb15a512544ab44e7f582e4a17c6f1f866c96a765e36cef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-Bacterial Agents - toxicity</topic><topic>Bacteria - drug effects</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Coated Materials, Biocompatible - toxicity</topic><topic>Equipment Reuse</topic><topic>Gases - chemistry</topic><topic>Humans</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Microbial Viability - drug effects</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Polymers - chemistry</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Cuicui</creatorcontrib><creatorcontrib>Hu, Yiqi</creatorcontrib><creatorcontrib>Song, Qing</creatorcontrib><creatorcontrib>Ye, Yumin</creatorcontrib><creatorcontrib>Gao, Lingling</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Ye, Ting</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Cuicui</au><au>Hu, Yiqi</au><au>Song, Qing</au><au>Ye, Yumin</au><au>Gao, Lingling</au><au>Li, Peng</au><au>Ye, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initiated Chemical Vapor Deposition of Graded Polymer Coatings Enabling Antibacterial, Antifouling, and Biocompatible Surfaces</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><stitle>ACS APPL MATER INTER</stitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-04-22</date><risdate>2020</risdate><volume>12</volume><issue>16</issue><spage>18978</spage><epage>18986</epage><pages>18978-18986</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We report initiated chemical vapor deposition of model-graded polymer coatings enabling antibacterial, antifouling, and biocompatible surfaces. The graded coating was constructed by a bottom layer consisting of bactericidal poly­(dimethyl amino methyl styrene) and a surface layer consisting of both dimethyl amino methyl styrene (DMAMS) and hydrophilic vinyl pyrrolidone (VP) moieties. Fourier transform infrared spectra showed existence of both DMAMS and VP in the coating with DMAMS as the major component, while X-ray photoelectron spectroscopy analysis and water contact angle measurement revealed a VP-enriched coating surface. The resultant coating exhibited more than 99.9% killing rate against both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis despite the incorporation of VP on the surface. We believe that such bactericidal capability resulted because of its high surface zeta potential, which could be originated from the DMAMS units distributed both on the top surface and underneath. The graded coating achieved more than 85% bacterial fouling resistance than the pristine substrate, as well as improved biocompatibility, owing to the abundant surface lactam groups from the VP moiety. Furthermore, the graded coating maintained good bactericidal capability after multicycle challenges of bacterial solutions and was durable against continuous rigorous washing, suggesting potential applications in biomedical devices.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32212671</pmid><doi>10.1021/acsami.9b22611</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5876-2177</orcidid><orcidid>https://orcid.org/0000-0001-8263-045X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-04, Vol.12 (16), p.18978-18986
issn 1944-8244
1944-8252
language eng
recordid cdi_webofscience_primary_000529202100082
source American Chemical Society; MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Anti-Bacterial Agents - toxicity
Bacteria - drug effects
Cell Line
Cell Survival - drug effects
Coated Materials, Biocompatible - chemistry
Coated Materials, Biocompatible - pharmacology
Coated Materials, Biocompatible - toxicity
Equipment Reuse
Gases - chemistry
Humans
Materials Science
Materials Science, Multidisciplinary
Microbial Viability - drug effects
Nanoscience & Nanotechnology
Polymers - chemistry
Science & Technology
Science & Technology - Other Topics
Technology
title Initiated Chemical Vapor Deposition of Graded Polymer Coatings Enabling Antibacterial, Antifouling, and Biocompatible Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initiated%20Chemical%20Vapor%20Deposition%20of%20Graded%20Polymer%20Coatings%20Enabling%20Antibacterial,%20Antifouling,%20and%20Biocompatible%20Surfaces&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Su,%20Cuicui&rft.date=2020-04-22&rft.volume=12&rft.issue=16&rft.spage=18978&rft.epage=18986&rft.pages=18978-18986&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b22611&rft_dat=%3Cacs_webof%3Ea367068417%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32212671&rfr_iscdi=true