Generalizing CoSaMP to signals from a union of low dimensional linear subspaces

The idea that signals reside in a union of low dimensional subspaces subsumes many low dimensional models that have been used extensively in the recent decade in many fields and applications. Until recently, the vast majority of works have studied each one of these models on its own. However, a rece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and computational harmonic analysis 2020-07, Vol.49 (1), p.99-122
Hauptverfasser: Tirer, Tom, Giryes, Raja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue 1
container_start_page 99
container_title Applied and computational harmonic analysis
container_volume 49
creator Tirer, Tom
Giryes, Raja
description The idea that signals reside in a union of low dimensional subspaces subsumes many low dimensional models that have been used extensively in the recent decade in many fields and applications. Until recently, the vast majority of works have studied each one of these models on its own. However, a recent approach suggests providing general theory for low dimensional models using their Gaussian mean width, which serves as a measure for the intrinsic low dimensionality of the data. In this work we use this novel approach to study a generalized version of the popular compressive sampling matching pursuit (CoSaMP) algorithm, and to provide general recovery guarantees for signals from a union of low dimensional linear subspaces, under the assumption that the measurement matrix is Gaussian. We discuss the implications of our results for specific models, and use the generalized algorithm as an inspiration for a new greedy method for signal reconstruction in a combined sparse-synthesis and cosparse-analysis model. We perform experiments that demonstrate the usefulness of the proposed strategy.
doi_str_mv 10.1016/j.acha.2018.11.005
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000528943000005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1063520318301301</els_id><sourcerecordid>S1063520318301301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-cfcdb2cb11401cedcba50cfcad2729b7285ffa6e5c51ac937ab131b7b150876d3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKt_wFPusuvMbvcLvMiiVahUUMFbSLLZmrJNSrK16K83yxaP4mmG4X2Gl4eQS4QYAfPrdczlB48TwDJGjAGyIzJBqPIoh_T9eNjzNMoSSE_JmfdrAMRZVk3Icq6McrzT39qsaG1f-NMz7S31emV452nr7IZyujPaGmpb2tk9bfRGGR8OvKOdNoo76nfCb7lU_pyctIFTF4c5JW_3d6_1Q7RYzh_r20UkU4A-kq1sRCJFaAEoVSMFzyAceZMUSSWKpMzalucqkxlyWaUFF5iiKARmUBZ5k05JMv6VznrvVMu2Tm-4-2IIbFDC1mxQwgYlDJEFJQG6GqG9Erb1Uisj1S8IIZKU1SwUhDFd_j9d6573QUltd6YP6M2IqqDgUyvHDnijnZI9a6z-q-cPcKeMOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalizing CoSaMP to signals from a union of low dimensional linear subspaces</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tirer, Tom ; Giryes, Raja</creator><creatorcontrib>Tirer, Tom ; Giryes, Raja</creatorcontrib><description>The idea that signals reside in a union of low dimensional subspaces subsumes many low dimensional models that have been used extensively in the recent decade in many fields and applications. Until recently, the vast majority of works have studied each one of these models on its own. However, a recent approach suggests providing general theory for low dimensional models using their Gaussian mean width, which serves as a measure for the intrinsic low dimensionality of the data. In this work we use this novel approach to study a generalized version of the popular compressive sampling matching pursuit (CoSaMP) algorithm, and to provide general recovery guarantees for signals from a union of low dimensional linear subspaces, under the assumption that the measurement matrix is Gaussian. We discuss the implications of our results for specific models, and use the generalized algorithm as an inspiration for a new greedy method for signal reconstruction in a combined sparse-synthesis and cosparse-analysis model. We perform experiments that demonstrate the usefulness of the proposed strategy.</description><identifier>ISSN: 1063-5203</identifier><identifier>EISSN: 1096-603X</identifier><identifier>DOI: 10.1016/j.acha.2018.11.005</identifier><language>eng</language><publisher>SAN DIEGO: Elsevier Inc</publisher><subject>Compressive sampling ; CoSaMP ; Gaussian mean width ; Mathematics ; Mathematics, Applied ; Physical Sciences ; Science &amp; Technology ; Sparse representation ; Union of subspaces</subject><ispartof>Applied and computational harmonic analysis, 2020-07, Vol.49 (1), p.99-122</ispartof><rights>2018 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000528943000005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c300t-cfcdb2cb11401cedcba50cfcad2729b7285ffa6e5c51ac937ab131b7b150876d3</citedby><cites>FETCH-LOGICAL-c300t-cfcdb2cb11401cedcba50cfcad2729b7285ffa6e5c51ac937ab131b7b150876d3</cites><orcidid>0000-0002-2830-0297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.acha.2018.11.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Tirer, Tom</creatorcontrib><creatorcontrib>Giryes, Raja</creatorcontrib><title>Generalizing CoSaMP to signals from a union of low dimensional linear subspaces</title><title>Applied and computational harmonic analysis</title><addtitle>APPL COMPUT HARMON A</addtitle><description>The idea that signals reside in a union of low dimensional subspaces subsumes many low dimensional models that have been used extensively in the recent decade in many fields and applications. Until recently, the vast majority of works have studied each one of these models on its own. However, a recent approach suggests providing general theory for low dimensional models using their Gaussian mean width, which serves as a measure for the intrinsic low dimensionality of the data. In this work we use this novel approach to study a generalized version of the popular compressive sampling matching pursuit (CoSaMP) algorithm, and to provide general recovery guarantees for signals from a union of low dimensional linear subspaces, under the assumption that the measurement matrix is Gaussian. We discuss the implications of our results for specific models, and use the generalized algorithm as an inspiration for a new greedy method for signal reconstruction in a combined sparse-synthesis and cosparse-analysis model. We perform experiments that demonstrate the usefulness of the proposed strategy.</description><subject>Compressive sampling</subject><subject>CoSaMP</subject><subject>Gaussian mean width</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Sparse representation</subject><subject>Union of subspaces</subject><issn>1063-5203</issn><issn>1096-603X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1LAzEQhoMoWKt_wFPusuvMbvcLvMiiVahUUMFbSLLZmrJNSrK16K83yxaP4mmG4X2Gl4eQS4QYAfPrdczlB48TwDJGjAGyIzJBqPIoh_T9eNjzNMoSSE_JmfdrAMRZVk3Icq6McrzT39qsaG1f-NMz7S31emV452nr7IZyujPaGmpb2tk9bfRGGR8OvKOdNoo76nfCb7lU_pyctIFTF4c5JW_3d6_1Q7RYzh_r20UkU4A-kq1sRCJFaAEoVSMFzyAceZMUSSWKpMzalucqkxlyWaUFF5iiKARmUBZ5k05JMv6VznrvVMu2Tm-4-2IIbFDC1mxQwgYlDJEFJQG6GqG9Erb1Uisj1S8IIZKU1SwUhDFd_j9d6573QUltd6YP6M2IqqDgUyvHDnijnZI9a6z-q-cPcKeMOw</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Tirer, Tom</creator><creator>Giryes, Raja</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2830-0297</orcidid></search><sort><creationdate>202007</creationdate><title>Generalizing CoSaMP to signals from a union of low dimensional linear subspaces</title><author>Tirer, Tom ; Giryes, Raja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-cfcdb2cb11401cedcba50cfcad2729b7285ffa6e5c51ac937ab131b7b150876d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compressive sampling</topic><topic>CoSaMP</topic><topic>Gaussian mean width</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Sparse representation</topic><topic>Union of subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tirer, Tom</creatorcontrib><creatorcontrib>Giryes, Raja</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Applied and computational harmonic analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tirer, Tom</au><au>Giryes, Raja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalizing CoSaMP to signals from a union of low dimensional linear subspaces</atitle><jtitle>Applied and computational harmonic analysis</jtitle><stitle>APPL COMPUT HARMON A</stitle><date>2020-07</date><risdate>2020</risdate><volume>49</volume><issue>1</issue><spage>99</spage><epage>122</epage><pages>99-122</pages><issn>1063-5203</issn><eissn>1096-603X</eissn><abstract>The idea that signals reside in a union of low dimensional subspaces subsumes many low dimensional models that have been used extensively in the recent decade in many fields and applications. Until recently, the vast majority of works have studied each one of these models on its own. However, a recent approach suggests providing general theory for low dimensional models using their Gaussian mean width, which serves as a measure for the intrinsic low dimensionality of the data. In this work we use this novel approach to study a generalized version of the popular compressive sampling matching pursuit (CoSaMP) algorithm, and to provide general recovery guarantees for signals from a union of low dimensional linear subspaces, under the assumption that the measurement matrix is Gaussian. We discuss the implications of our results for specific models, and use the generalized algorithm as an inspiration for a new greedy method for signal reconstruction in a combined sparse-synthesis and cosparse-analysis model. We perform experiments that demonstrate the usefulness of the proposed strategy.</abstract><cop>SAN DIEGO</cop><pub>Elsevier Inc</pub><doi>10.1016/j.acha.2018.11.005</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2830-0297</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-5203
ispartof Applied and computational harmonic analysis, 2020-07, Vol.49 (1), p.99-122
issn 1063-5203
1096-603X
language eng
recordid cdi_webofscience_primary_000528943000005
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Compressive sampling
CoSaMP
Gaussian mean width
Mathematics
Mathematics, Applied
Physical Sciences
Science & Technology
Sparse representation
Union of subspaces
title Generalizing CoSaMP to signals from a union of low dimensional linear subspaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T21%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalizing%20CoSaMP%20to%20signals%20from%20a%20union%20of%20low%20dimensional%20linear%20subspaces&rft.jtitle=Applied%20and%20computational%20harmonic%20analysis&rft.au=Tirer,%20Tom&rft.date=2020-07&rft.volume=49&rft.issue=1&rft.spage=99&rft.epage=122&rft.pages=99-122&rft.issn=1063-5203&rft.eissn=1096-603X&rft_id=info:doi/10.1016/j.acha.2018.11.005&rft_dat=%3Celsevier_webof%3ES1063520318301301%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1063520318301301&rfr_iscdi=true