HITTING PROBABILITIES OF A BROWNIAN FLOW WITH RADIAL DRIFT
We consider a stochastic flow ϕt (x,ω) in ℝⁿ with initial point ϕ₀(x,ω) = x, driven by a single n-dimensional Brownian motion, and with an outward radial drift of magnitude F ( ‖ ϕ t ( x ) ‖ ) ‖ ϕ t ( x ) ‖ , with F nonnegative, bounded and Lipschitz. We consider initial points x lying in a set of p...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2020-03, Vol.48 (2), p.646-671 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a stochastic flow ϕt (x,ω) in ℝⁿ with initial point ϕ₀(x,ω) = x, driven by a single n-dimensional Brownian motion, and with an outward radial drift of magnitude
F
(
‖
ϕ
t
(
x
)
‖
)
‖
ϕ
t
(
x
)
‖
, with F nonnegative, bounded and Lipschitz. We consider initial points x lying in a set of positive distance from the origin. We show that there exist constants C∗, c∗ > 0 not depending on n, such that if F >C∗n then the image of the initial set under the flow has probability 0 of hitting the origin. If 0 ≤ F ≤ c∗n
3/4, and if the initial set has a nonempty interior, then the image of the set has positive probability of hitting the origin. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/19-AOP1368 |