Emergence of a bicritical end point in the random-crystal-field Blume-Capel model

We obtain the phase diagram for the Blume-Capel model with the bimodal distribution for random crystal fields, in the space of three fields: temperature (T), crystal field (Δ), and magnetic field (H) on a fully connected graph. We find three different topologies for the phase diagram, depending on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2020-04, Vol.101 (4-1), p.042125-042125, Article 042125
Hauptverfasser: Sumedha, Mukherjee, Soheli
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain the phase diagram for the Blume-Capel model with the bimodal distribution for random crystal fields, in the space of three fields: temperature (T), crystal field (Δ), and magnetic field (H) on a fully connected graph. We find three different topologies for the phase diagram, depending on the strength of disorder. Three critical lines meet at a tricritical point only for weak disorder. As disorder strength increases there is no tricritical point in the phase diagram. We instead find a bicritical end point, where only two of the critical lines meet on a first-order surface in the H=0 plane. For intermediate strengths of disorder, the phase diagram has critical end points along with the bicritical end point. One needs to look at the phase diagram in the space of three fields to identify various such multicritical points.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.101.042125