Non-Abelian tensor square and related constructions of p-groups

Let G be a group. We denote by ν ( G ) a certain extension of the non-Abelian tensor square [ G , G φ ] by G × G . We prove that if G is a finite potent p -group, then [ G , G φ ] and the k -th term of the lower central series γ k ( ν ( G ) ) are potently embedded in ν ( G ) (Theorem A). Moreover, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2020-05, Vol.114 (5), p.481-490
Hauptverfasser: Bastos, R., de Melo, E., Gonçalves, N., Nunes, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a group. We denote by ν ( G ) a certain extension of the non-Abelian tensor square [ G , G φ ] by G × G . We prove that if G is a finite potent p -group, then [ G , G φ ] and the k -th term of the lower central series γ k ( ν ( G ) ) are potently embedded in ν ( G ) (Theorem A). Moreover, we show that if G is a potent p -group, then the exponent exp ( ν ( G ) ) divides p · exp ( G ) (Theorem B). We also study the weak commutativity construction of powerful p -groups (Theorem C).
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-020-01449-0