Non-Abelian tensor square and related constructions of p-groups
Let G be a group. We denote by ν ( G ) a certain extension of the non-Abelian tensor square [ G , G φ ] by G × G . We prove that if G is a finite potent p -group, then [ G , G φ ] and the k -th term of the lower central series γ k ( ν ( G ) ) are potently embedded in ν ( G ) (Theorem A). Moreover, w...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2020-05, Vol.114 (5), p.481-490 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a group. We denote by
ν
(
G
)
a certain extension of the non-Abelian tensor square
[
G
,
G
φ
]
by
G
×
G
. We prove that if
G
is a finite potent
p
-group, then
[
G
,
G
φ
]
and the
k
-th term of the lower central series
γ
k
(
ν
(
G
)
)
are potently embedded in
ν
(
G
)
(Theorem A). Moreover, we show that if
G
is a potent
p
-group, then the exponent
exp
(
ν
(
G
)
)
divides
p
·
exp
(
G
)
(Theorem B). We also study the weak commutativity construction of powerful
p
-groups (Theorem C). |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-020-01449-0 |