An enhanced proportionate NLMF algorithm for group-sparse system identification
A novel adaptive filtering algorithm is devised and derived for group-sparse system identification. To adequately make use of the group-sparsity in satellite communication and network echo channels, we integrate a mixed-norm constraint into the proportionate normalized least mean fourth (PNLMF) algo...
Gespeichert in:
Veröffentlicht in: | International journal of electronics and communications 2020-05, Vol.119, p.153178, Article 153178 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel adaptive filtering algorithm is devised and derived for group-sparse system identification. To adequately make use of the group-sparsity in satellite communication and network echo channels, we integrate a mixed-norm constraint into the proportionate normalized least mean fourth (PNLMF) algorithm, which is referred as mixed-norm constrained PNLMF (MNC-PNLMF) algorithm. The MNC-PNLMF algorithm is derived and analyzed in detail. Serval experimental experiments are constructed to validate the effectiveness of the MNC-PNLMF. The experimental results demonstrate that the MNC-PNLMF outperforms the NLMF, PNLMF, zero-attraction NLMF (ZA-NLMF), and reweighted ZA-NLMF (RZA-NLMF) for group-sparse system identification. |
---|---|
ISSN: | 1434-8411 1618-0399 |
DOI: | 10.1016/j.aeue.2020.153178 |