An enhanced proportionate NLMF algorithm for group-sparse system identification

A novel adaptive filtering algorithm is devised and derived for group-sparse system identification. To adequately make use of the group-sparsity in satellite communication and network echo channels, we integrate a mixed-norm constraint into the proportionate normalized least mean fourth (PNLMF) algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electronics and communications 2020-05, Vol.119, p.153178, Article 153178
Hauptverfasser: Jiang, Zhengxiong, Shi, Wanlu, Huang, Xinqi, Li, Yingsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel adaptive filtering algorithm is devised and derived for group-sparse system identification. To adequately make use of the group-sparsity in satellite communication and network echo channels, we integrate a mixed-norm constraint into the proportionate normalized least mean fourth (PNLMF) algorithm, which is referred as mixed-norm constrained PNLMF (MNC-PNLMF) algorithm. The MNC-PNLMF algorithm is derived and analyzed in detail. Serval experimental experiments are constructed to validate the effectiveness of the MNC-PNLMF. The experimental results demonstrate that the MNC-PNLMF outperforms the NLMF, PNLMF, zero-attraction NLMF (ZA-NLMF), and reweighted ZA-NLMF (RZA-NLMF) for group-sparse system identification.
ISSN:1434-8411
1618-0399
DOI:10.1016/j.aeue.2020.153178