metan: An R package for multi‐environment trial analysis

Multi‐environment trials (MET) are crucial steps in plant breeding programs that aim at increasing crop productivity to ensure global food security. The analysis of MET data requires the combination of several approaches including data manipulation, visualization and modelling. As new methods are pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in ecology and evolution 2020-06, Vol.11 (6), p.783-789
Hauptverfasser: Olivoto, Tiago, Lúcio, Alessandro Dal'Col, Jarman, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 789
container_issue 6
container_start_page 783
container_title Methods in ecology and evolution
container_volume 11
creator Olivoto, Tiago
Lúcio, Alessandro Dal'Col
Jarman, Simon
description Multi‐environment trials (MET) are crucial steps in plant breeding programs that aim at increasing crop productivity to ensure global food security. The analysis of MET data requires the combination of several approaches including data manipulation, visualization and modelling. As new methods are proposed, analysing MET data correctly and completely remains a challenge, often intractable with existing tools. Here we describe the metan R package, a collection of functions that implement a workflow‐based approach to (a) check, manipulate and summarize typical MET data; (b) analyse individual environments using both fixed and mixed‐effect models; (c) compute parametric and nonparametric stability statistics; (d) implement biometrical models widely used in MET analysis and (e) plot typical MET data quickly. In this paper, we present a summary of the functions implemented in metan and how they integrate into a workflow to explore and analyse MET data. We guide the user along a gentle learning curve and show how adding only a few commands or options at a time, powerful analyses can be implemented. metan offers a flexible, intuitive and richly documented working environment with tools that will facilitate the implementation of a complete analysis of MET datasets.
doi_str_mv 10.1111/2041-210X.13384
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000526614800001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408473570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4034-2a3acb5b39e0d27f6d5151c552e20bac21fcab0e5e95f6e83fc4fc164e550c293</originalsourceid><addsrcrecordid>eNqNkMtKw0AUhoMoWGrXbgMuJe1c06S7EuoFKoIouBsm0zMyNZnUmVTpzkfwGX0SJ0aKOz2bOQz_d_j5ougUozEOMyGI4YRg9DjGlGbsIBrsfw5_7cfRyPs1CkOzHBE2iGY1tNLO4rmN7-KNVM_yCWLduLjeVq35fP8A-2pcY2uwbdw6I6tYWlntvPEn0ZGWlYfRzzuMHi4W98VVsry9vC7my0QxRFlCJJWq5CXNAa3IVKcrjjlWnBMgqJSKYK1kiYBDznUKGdWKaYVTBpwjRXI6jM76uxvXvGzBt2LdbF0o4QVhKGNTyqcopCZ9SrnGewdabJyppdsJjETnSHQWRGdBfDsKRNYTb1A22isDVsGeCo44SVPMsk4XLkwrW9PYotnaNqDn_0dDOv1Jmwp2f_USN4sF7Rt-ATHEiUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408473570</pqid></control><display><type>article</type><title>metan: An R package for multi‐environment trial analysis</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Olivoto, Tiago ; Lúcio, Alessandro Dal'Col ; Jarman, Simon</creator><contributor>Jarman, Simon</contributor><creatorcontrib>Olivoto, Tiago ; Lúcio, Alessandro Dal'Col ; Jarman, Simon ; Jarman, Simon</creatorcontrib><description>Multi‐environment trials (MET) are crucial steps in plant breeding programs that aim at increasing crop productivity to ensure global food security. The analysis of MET data requires the combination of several approaches including data manipulation, visualization and modelling. As new methods are proposed, analysing MET data correctly and completely remains a challenge, often intractable with existing tools. Here we describe the metan R package, a collection of functions that implement a workflow‐based approach to (a) check, manipulate and summarize typical MET data; (b) analyse individual environments using both fixed and mixed‐effect models; (c) compute parametric and nonparametric stability statistics; (d) implement biometrical models widely used in MET analysis and (e) plot typical MET data quickly. In this paper, we present a summary of the functions implemented in metan and how they integrate into a workflow to explore and analyse MET data. We guide the user along a gentle learning curve and show how adding only a few commands or options at a time, powerful analyses can be implemented. metan offers a flexible, intuitive and richly documented working environment with tools that will facilitate the implementation of a complete analysis of MET datasets.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.13384</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>additive main effect and multiplicative interaction ; biometry ; Crop production ; Data analysis ; Ecology ; Environmental Sciences &amp; Ecology ; Food security ; genotype–environment interaction ; GGE biplot ; Learning curves ; Life Sciences &amp; Biomedicine ; multi‐environment trials ; Plant breeding ; R software ; Science &amp; Technology ; stability ; Stability analysis ; Statistical analysis ; statistics ; Workflow ; Working conditions</subject><ispartof>Methods in ecology and evolution, 2020-06, Vol.11 (6), p.783-789</ispartof><rights>2020 British Ecological Society</rights><rights>Methods in Ecology and Evolution © 2020 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>417</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526614800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4034-2a3acb5b39e0d27f6d5151c552e20bac21fcab0e5e95f6e83fc4fc164e550c293</citedby><cites>FETCH-LOGICAL-c4034-2a3acb5b39e0d27f6d5151c552e20bac21fcab0e5e95f6e83fc4fc164e550c293</cites><orcidid>0000-0003-0761-4200 ; 0000-0002-0241-9636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.13384$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.13384$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><contributor>Jarman, Simon</contributor><creatorcontrib>Olivoto, Tiago</creatorcontrib><creatorcontrib>Lúcio, Alessandro Dal'Col</creatorcontrib><creatorcontrib>Jarman, Simon</creatorcontrib><title>metan: An R package for multi‐environment trial analysis</title><title>Methods in ecology and evolution</title><addtitle>METHODS ECOL EVOL</addtitle><description>Multi‐environment trials (MET) are crucial steps in plant breeding programs that aim at increasing crop productivity to ensure global food security. The analysis of MET data requires the combination of several approaches including data manipulation, visualization and modelling. As new methods are proposed, analysing MET data correctly and completely remains a challenge, often intractable with existing tools. Here we describe the metan R package, a collection of functions that implement a workflow‐based approach to (a) check, manipulate and summarize typical MET data; (b) analyse individual environments using both fixed and mixed‐effect models; (c) compute parametric and nonparametric stability statistics; (d) implement biometrical models widely used in MET analysis and (e) plot typical MET data quickly. In this paper, we present a summary of the functions implemented in metan and how they integrate into a workflow to explore and analyse MET data. We guide the user along a gentle learning curve and show how adding only a few commands or options at a time, powerful analyses can be implemented. metan offers a flexible, intuitive and richly documented working environment with tools that will facilitate the implementation of a complete analysis of MET datasets.</description><subject>additive main effect and multiplicative interaction</subject><subject>biometry</subject><subject>Crop production</subject><subject>Data analysis</subject><subject>Ecology</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Food security</subject><subject>genotype–environment interaction</subject><subject>GGE biplot</subject><subject>Learning curves</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>multi‐environment trials</subject><subject>Plant breeding</subject><subject>R software</subject><subject>Science &amp; Technology</subject><subject>stability</subject><subject>Stability analysis</subject><subject>Statistical analysis</subject><subject>statistics</subject><subject>Workflow</subject><subject>Working conditions</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtKw0AUhoMoWGrXbgMuJe1c06S7EuoFKoIouBsm0zMyNZnUmVTpzkfwGX0SJ0aKOz2bOQz_d_j5ougUozEOMyGI4YRg9DjGlGbsIBrsfw5_7cfRyPs1CkOzHBE2iGY1tNLO4rmN7-KNVM_yCWLduLjeVq35fP8A-2pcY2uwbdw6I6tYWlntvPEn0ZGWlYfRzzuMHi4W98VVsry9vC7my0QxRFlCJJWq5CXNAa3IVKcrjjlWnBMgqJSKYK1kiYBDznUKGdWKaYVTBpwjRXI6jM76uxvXvGzBt2LdbF0o4QVhKGNTyqcopCZ9SrnGewdabJyppdsJjETnSHQWRGdBfDsKRNYTb1A22isDVsGeCo44SVPMsk4XLkwrW9PYotnaNqDn_0dDOv1Jmwp2f_USN4sF7Rt-ATHEiUg</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Olivoto, Tiago</creator><creator>Lúcio, Alessandro Dal'Col</creator><creator>Jarman, Simon</creator><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-0761-4200</orcidid><orcidid>https://orcid.org/0000-0002-0241-9636</orcidid></search><sort><creationdate>202006</creationdate><title>metan: An R package for multi‐environment trial analysis</title><author>Olivoto, Tiago ; Lúcio, Alessandro Dal'Col ; Jarman, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4034-2a3acb5b39e0d27f6d5151c552e20bac21fcab0e5e95f6e83fc4fc164e550c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>additive main effect and multiplicative interaction</topic><topic>biometry</topic><topic>Crop production</topic><topic>Data analysis</topic><topic>Ecology</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Food security</topic><topic>genotype–environment interaction</topic><topic>GGE biplot</topic><topic>Learning curves</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>multi‐environment trials</topic><topic>Plant breeding</topic><topic>R software</topic><topic>Science &amp; Technology</topic><topic>stability</topic><topic>Stability analysis</topic><topic>Statistical analysis</topic><topic>statistics</topic><topic>Workflow</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olivoto, Tiago</creatorcontrib><creatorcontrib>Lúcio, Alessandro Dal'Col</creatorcontrib><creatorcontrib>Jarman, Simon</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olivoto, Tiago</au><au>Lúcio, Alessandro Dal'Col</au><au>Jarman, Simon</au><au>Jarman, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>metan: An R package for multi‐environment trial analysis</atitle><jtitle>Methods in ecology and evolution</jtitle><stitle>METHODS ECOL EVOL</stitle><date>2020-06</date><risdate>2020</risdate><volume>11</volume><issue>6</issue><spage>783</spage><epage>789</epage><pages>783-789</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Multi‐environment trials (MET) are crucial steps in plant breeding programs that aim at increasing crop productivity to ensure global food security. The analysis of MET data requires the combination of several approaches including data manipulation, visualization and modelling. As new methods are proposed, analysing MET data correctly and completely remains a challenge, often intractable with existing tools. Here we describe the metan R package, a collection of functions that implement a workflow‐based approach to (a) check, manipulate and summarize typical MET data; (b) analyse individual environments using both fixed and mixed‐effect models; (c) compute parametric and nonparametric stability statistics; (d) implement biometrical models widely used in MET analysis and (e) plot typical MET data quickly. In this paper, we present a summary of the functions implemented in metan and how they integrate into a workflow to explore and analyse MET data. We guide the user along a gentle learning curve and show how adding only a few commands or options at a time, powerful analyses can be implemented. metan offers a flexible, intuitive and richly documented working environment with tools that will facilitate the implementation of a complete analysis of MET datasets.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1111/2041-210X.13384</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0761-4200</orcidid><orcidid>https://orcid.org/0000-0002-0241-9636</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-210X
ispartof Methods in ecology and evolution, 2020-06, Vol.11 (6), p.783-789
issn 2041-210X
2041-210X
language eng
recordid cdi_webofscience_primary_000526614800001
source Access via Wiley Online Library; Alma/SFX Local Collection
subjects additive main effect and multiplicative interaction
biometry
Crop production
Data analysis
Ecology
Environmental Sciences & Ecology
Food security
genotype–environment interaction
GGE biplot
Learning curves
Life Sciences & Biomedicine
multi‐environment trials
Plant breeding
R software
Science & Technology
stability
Stability analysis
Statistical analysis
statistics
Workflow
Working conditions
title metan: An R package for multi‐environment trial analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=metan:%20An%20R%20package%20for%20multi%E2%80%90environment%20trial%20analysis&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Olivoto,%20Tiago&rft.date=2020-06&rft.volume=11&rft.issue=6&rft.spage=783&rft.epage=789&rft.pages=783-789&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.13384&rft_dat=%3Cproquest_webof%3E2408473570%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408473570&rft_id=info:pmid/&rfr_iscdi=true