metan: An R package for multi‐environment trial analysis
Multi‐environment trials (MET) are crucial steps in plant breeding programs that aim at increasing crop productivity to ensure global food security. The analysis of MET data requires the combination of several approaches including data manipulation, visualization and modelling. As new methods are pr...
Gespeichert in:
Veröffentlicht in: | Methods in ecology and evolution 2020-06, Vol.11 (6), p.783-789 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 789 |
---|---|
container_issue | 6 |
container_start_page | 783 |
container_title | Methods in ecology and evolution |
container_volume | 11 |
creator | Olivoto, Tiago Lúcio, Alessandro Dal'Col Jarman, Simon |
description | Multi‐environment trials (MET) are crucial steps in plant breeding programs that aim at increasing crop productivity to ensure global food security. The analysis of MET data requires the combination of several approaches including data manipulation, visualization and modelling. As new methods are proposed, analysing MET data correctly and completely remains a challenge, often intractable with existing tools.
Here we describe the metan R package, a collection of functions that implement a workflow‐based approach to (a) check, manipulate and summarize typical MET data; (b) analyse individual environments using both fixed and mixed‐effect models; (c) compute parametric and nonparametric stability statistics; (d) implement biometrical models widely used in MET analysis and (e) plot typical MET data quickly.
In this paper, we present a summary of the functions implemented in metan and how they integrate into a workflow to explore and analyse MET data. We guide the user along a gentle learning curve and show how adding only a few commands or options at a time, powerful analyses can be implemented.
metan offers a flexible, intuitive and richly documented working environment with tools that will facilitate the implementation of a complete analysis of MET datasets. |
doi_str_mv | 10.1111/2041-210X.13384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000526614800001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408473570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4034-2a3acb5b39e0d27f6d5151c552e20bac21fcab0e5e95f6e83fc4fc164e550c293</originalsourceid><addsrcrecordid>eNqNkMtKw0AUhoMoWGrXbgMuJe1c06S7EuoFKoIouBsm0zMyNZnUmVTpzkfwGX0SJ0aKOz2bOQz_d_j5ougUozEOMyGI4YRg9DjGlGbsIBrsfw5_7cfRyPs1CkOzHBE2iGY1tNLO4rmN7-KNVM_yCWLduLjeVq35fP8A-2pcY2uwbdw6I6tYWlntvPEn0ZGWlYfRzzuMHi4W98VVsry9vC7my0QxRFlCJJWq5CXNAa3IVKcrjjlWnBMgqJSKYK1kiYBDznUKGdWKaYVTBpwjRXI6jM76uxvXvGzBt2LdbF0o4QVhKGNTyqcopCZ9SrnGewdabJyppdsJjETnSHQWRGdBfDsKRNYTb1A22isDVsGeCo44SVPMsk4XLkwrW9PYotnaNqDn_0dDOv1Jmwp2f_USN4sF7Rt-ATHEiUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408473570</pqid></control><display><type>article</type><title>metan: An R package for multi‐environment trial analysis</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Olivoto, Tiago ; Lúcio, Alessandro Dal'Col ; Jarman, Simon</creator><contributor>Jarman, Simon</contributor><creatorcontrib>Olivoto, Tiago ; Lúcio, Alessandro Dal'Col ; Jarman, Simon ; Jarman, Simon</creatorcontrib><description>Multi‐environment trials (MET) are crucial steps in plant breeding programs that aim at increasing crop productivity to ensure global food security. The analysis of MET data requires the combination of several approaches including data manipulation, visualization and modelling. As new methods are proposed, analysing MET data correctly and completely remains a challenge, often intractable with existing tools.
Here we describe the metan R package, a collection of functions that implement a workflow‐based approach to (a) check, manipulate and summarize typical MET data; (b) analyse individual environments using both fixed and mixed‐effect models; (c) compute parametric and nonparametric stability statistics; (d) implement biometrical models widely used in MET analysis and (e) plot typical MET data quickly.
In this paper, we present a summary of the functions implemented in metan and how they integrate into a workflow to explore and analyse MET data. We guide the user along a gentle learning curve and show how adding only a few commands or options at a time, powerful analyses can be implemented.
metan offers a flexible, intuitive and richly documented working environment with tools that will facilitate the implementation of a complete analysis of MET datasets.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.13384</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>additive main effect and multiplicative interaction ; biometry ; Crop production ; Data analysis ; Ecology ; Environmental Sciences & Ecology ; Food security ; genotype–environment interaction ; GGE biplot ; Learning curves ; Life Sciences & Biomedicine ; multi‐environment trials ; Plant breeding ; R software ; Science & Technology ; stability ; Stability analysis ; Statistical analysis ; statistics ; Workflow ; Working conditions</subject><ispartof>Methods in ecology and evolution, 2020-06, Vol.11 (6), p.783-789</ispartof><rights>2020 British Ecological Society</rights><rights>Methods in Ecology and Evolution © 2020 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>417</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526614800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4034-2a3acb5b39e0d27f6d5151c552e20bac21fcab0e5e95f6e83fc4fc164e550c293</citedby><cites>FETCH-LOGICAL-c4034-2a3acb5b39e0d27f6d5151c552e20bac21fcab0e5e95f6e83fc4fc164e550c293</cites><orcidid>0000-0003-0761-4200 ; 0000-0002-0241-9636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.13384$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.13384$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><contributor>Jarman, Simon</contributor><creatorcontrib>Olivoto, Tiago</creatorcontrib><creatorcontrib>Lúcio, Alessandro Dal'Col</creatorcontrib><creatorcontrib>Jarman, Simon</creatorcontrib><title>metan: An R package for multi‐environment trial analysis</title><title>Methods in ecology and evolution</title><addtitle>METHODS ECOL EVOL</addtitle><description>Multi‐environment trials (MET) are crucial steps in plant breeding programs that aim at increasing crop productivity to ensure global food security. The analysis of MET data requires the combination of several approaches including data manipulation, visualization and modelling. As new methods are proposed, analysing MET data correctly and completely remains a challenge, often intractable with existing tools.
Here we describe the metan R package, a collection of functions that implement a workflow‐based approach to (a) check, manipulate and summarize typical MET data; (b) analyse individual environments using both fixed and mixed‐effect models; (c) compute parametric and nonparametric stability statistics; (d) implement biometrical models widely used in MET analysis and (e) plot typical MET data quickly.
In this paper, we present a summary of the functions implemented in metan and how they integrate into a workflow to explore and analyse MET data. We guide the user along a gentle learning curve and show how adding only a few commands or options at a time, powerful analyses can be implemented.
metan offers a flexible, intuitive and richly documented working environment with tools that will facilitate the implementation of a complete analysis of MET datasets.</description><subject>additive main effect and multiplicative interaction</subject><subject>biometry</subject><subject>Crop production</subject><subject>Data analysis</subject><subject>Ecology</subject><subject>Environmental Sciences & Ecology</subject><subject>Food security</subject><subject>genotype–environment interaction</subject><subject>GGE biplot</subject><subject>Learning curves</subject><subject>Life Sciences & Biomedicine</subject><subject>multi‐environment trials</subject><subject>Plant breeding</subject><subject>R software</subject><subject>Science & Technology</subject><subject>stability</subject><subject>Stability analysis</subject><subject>Statistical analysis</subject><subject>statistics</subject><subject>Workflow</subject><subject>Working conditions</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtKw0AUhoMoWGrXbgMuJe1c06S7EuoFKoIouBsm0zMyNZnUmVTpzkfwGX0SJ0aKOz2bOQz_d_j5ougUozEOMyGI4YRg9DjGlGbsIBrsfw5_7cfRyPs1CkOzHBE2iGY1tNLO4rmN7-KNVM_yCWLduLjeVq35fP8A-2pcY2uwbdw6I6tYWlntvPEn0ZGWlYfRzzuMHi4W98VVsry9vC7my0QxRFlCJJWq5CXNAa3IVKcrjjlWnBMgqJSKYK1kiYBDznUKGdWKaYVTBpwjRXI6jM76uxvXvGzBt2LdbF0o4QVhKGNTyqcopCZ9SrnGewdabJyppdsJjETnSHQWRGdBfDsKRNYTb1A22isDVsGeCo44SVPMsk4XLkwrW9PYotnaNqDn_0dDOv1Jmwp2f_USN4sF7Rt-ATHEiUg</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Olivoto, Tiago</creator><creator>Lúcio, Alessandro Dal'Col</creator><creator>Jarman, Simon</creator><general>Wiley</general><general>John Wiley & Sons, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-0761-4200</orcidid><orcidid>https://orcid.org/0000-0002-0241-9636</orcidid></search><sort><creationdate>202006</creationdate><title>metan: An R package for multi‐environment trial analysis</title><author>Olivoto, Tiago ; Lúcio, Alessandro Dal'Col ; Jarman, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4034-2a3acb5b39e0d27f6d5151c552e20bac21fcab0e5e95f6e83fc4fc164e550c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>additive main effect and multiplicative interaction</topic><topic>biometry</topic><topic>Crop production</topic><topic>Data analysis</topic><topic>Ecology</topic><topic>Environmental Sciences & Ecology</topic><topic>Food security</topic><topic>genotype–environment interaction</topic><topic>GGE biplot</topic><topic>Learning curves</topic><topic>Life Sciences & Biomedicine</topic><topic>multi‐environment trials</topic><topic>Plant breeding</topic><topic>R software</topic><topic>Science & Technology</topic><topic>stability</topic><topic>Stability analysis</topic><topic>Statistical analysis</topic><topic>statistics</topic><topic>Workflow</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olivoto, Tiago</creatorcontrib><creatorcontrib>Lúcio, Alessandro Dal'Col</creatorcontrib><creatorcontrib>Jarman, Simon</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olivoto, Tiago</au><au>Lúcio, Alessandro Dal'Col</au><au>Jarman, Simon</au><au>Jarman, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>metan: An R package for multi‐environment trial analysis</atitle><jtitle>Methods in ecology and evolution</jtitle><stitle>METHODS ECOL EVOL</stitle><date>2020-06</date><risdate>2020</risdate><volume>11</volume><issue>6</issue><spage>783</spage><epage>789</epage><pages>783-789</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Multi‐environment trials (MET) are crucial steps in plant breeding programs that aim at increasing crop productivity to ensure global food security. The analysis of MET data requires the combination of several approaches including data manipulation, visualization and modelling. As new methods are proposed, analysing MET data correctly and completely remains a challenge, often intractable with existing tools.
Here we describe the metan R package, a collection of functions that implement a workflow‐based approach to (a) check, manipulate and summarize typical MET data; (b) analyse individual environments using both fixed and mixed‐effect models; (c) compute parametric and nonparametric stability statistics; (d) implement biometrical models widely used in MET analysis and (e) plot typical MET data quickly.
In this paper, we present a summary of the functions implemented in metan and how they integrate into a workflow to explore and analyse MET data. We guide the user along a gentle learning curve and show how adding only a few commands or options at a time, powerful analyses can be implemented.
metan offers a flexible, intuitive and richly documented working environment with tools that will facilitate the implementation of a complete analysis of MET datasets.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1111/2041-210X.13384</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0761-4200</orcidid><orcidid>https://orcid.org/0000-0002-0241-9636</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-210X |
ispartof | Methods in ecology and evolution, 2020-06, Vol.11 (6), p.783-789 |
issn | 2041-210X 2041-210X |
language | eng |
recordid | cdi_webofscience_primary_000526614800001 |
source | Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | additive main effect and multiplicative interaction biometry Crop production Data analysis Ecology Environmental Sciences & Ecology Food security genotype–environment interaction GGE biplot Learning curves Life Sciences & Biomedicine multi‐environment trials Plant breeding R software Science & Technology stability Stability analysis Statistical analysis statistics Workflow Working conditions |
title | metan: An R package for multi‐environment trial analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=metan:%20An%20R%20package%20for%20multi%E2%80%90environment%20trial%20analysis&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Olivoto,%20Tiago&rft.date=2020-06&rft.volume=11&rft.issue=6&rft.spage=783&rft.epage=789&rft.pages=783-789&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.13384&rft_dat=%3Cproquest_webof%3E2408473570%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408473570&rft_id=info:pmid/&rfr_iscdi=true |