Metal–Semiconductor–Metal ε‑Ga2O3 Solar-Blind Photodetectors with a Record-High Responsivity Rejection Ratio and Their Gain Mechanism
In recent years, Ga2O3 solar-blind photodetectors (SBPDs) have received great attention for their potential applications in solar-blind imaging, deep space exploration, confidential space communication, etc. In this work, we demonstrated an ultra-high-performance ε-Ga2O3 metal–semiconductor–metal (M...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2020-03, Vol.7 (3), p.812-820 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 820 |
---|---|
container_issue | 3 |
container_start_page | 812 |
container_title | ACS photonics |
container_volume | 7 |
creator | Qin, Yuan Li, Liheng Zhao, Xiaolong Tompa, Gary S Dong, Hang Jian, Guangzhong He, Qiming Tan, Pengju Hou, Xiaohu Zhang, Zhongfang Yu, Shunjie Sun, Haiding Xu, Guangwei Miao, Xiangshui Xue, Kanhao Long, Shibing Liu, Ming |
description | In recent years, Ga2O3 solar-blind photodetectors (SBPDs) have received great attention for their potential applications in solar-blind imaging, deep space exploration, confidential space communication, etc. In this work, we demonstrated an ultra-high-performance ε-Ga2O3 metal–semiconductor–metal (MSM) SBPD. The fabricated photodetectors exhibited a record-high responsivity and fast decay time of 230 A/W and 24 ms, respectively, compared with MSM-structured Ga2O3 photodetectors reported to date. Additionally, the ε-Ga2O3 MSM SBPD presents an ultrahigh detectivity of 1.2 × 1015 Jones with a low dark current of 23.5 pA under an operation voltage of 6 V, suggesting its strong capability of detecting an ultraweak signal. The high sensitivity and wavelength selectivity of the photodetector were further confirmed by the record-high responsivity rejection ratio (R 250 nm/R 400 nm) of 1.2 × 105. From the temperature-dependent electrical characteristics in the dark, the thermionic field emission and Poole–Frenkel emission were found to be responsible for the current transport in the low and high electric field regimes, respectively. In addition, the gain mechanism was revealed by the Schottky barrier lowering effect due to the defect states at the interface of the metal contact and Ga2O3 or in the bulk of Ga2O3 based on current transport mechanism and density functional theory calculations. These results facilitate a better understanding of ε-Ga2O3 photoelectronic devices and provide possible guidance for promoting their performance in future solar-blind detection applications. |
doi_str_mv | 10.1021/acsphotonics.9b01727 |
format | Article |
fullrecord | <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000526350900033CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b696590874</sourcerecordid><originalsourceid>FETCH-LOGICAL-a196t-11572fb29c5ee0b253e10a4ddcd7456e08bcddae333aec58be8ab05ef649799f3</originalsourceid><addsrcrecordid>eNqNUUtOwzAUjBBIVKU3YOE9SvEnTpolVFCQqIpaWEeO_UJctXYVu1Td9QBsEGfhGhyiJ8GhLFiymnlP874TRecE9wmm5FJIt6qtt0ZL189LTDKaHUUdyhiOE0zp8R9-GvWcm2OMCeYsTZNO9DYGLxb73ccMllpao9bS2ybEP3n09bnfvY8EnTA0swvRxNcLbRR6bAcq8NCKHdpoXyOBpiBto-I7_VIH7lbWOP2q_TYE86DU1qCpCIBEaPFUg27QSGiDxiBrYbRbnkUnlVg46P1iN3q-vXka3sUPk9H98OohFiRPfUwIz2hV0lxyAFxSzoBgkSglVZbwFPCglEoJYIwJkHxQwkCUmEOVJnmW5xXrRoND3w2UtnJSg5FQrBq9FM22CO_hNGUc54ExNtS-XdoM7dr4UHrx_9Kgxgd1MKmY23VjwlkFwUXrXPHXueLXOfYN6vKURA</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metal–Semiconductor–Metal ε‑Ga2O3 Solar-Blind Photodetectors with a Record-High Responsivity Rejection Ratio and Their Gain Mechanism</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Qin, Yuan ; Li, Liheng ; Zhao, Xiaolong ; Tompa, Gary S ; Dong, Hang ; Jian, Guangzhong ; He, Qiming ; Tan, Pengju ; Hou, Xiaohu ; Zhang, Zhongfang ; Yu, Shunjie ; Sun, Haiding ; Xu, Guangwei ; Miao, Xiangshui ; Xue, Kanhao ; Long, Shibing ; Liu, Ming</creator><creatorcontrib>Qin, Yuan ; Li, Liheng ; Zhao, Xiaolong ; Tompa, Gary S ; Dong, Hang ; Jian, Guangzhong ; He, Qiming ; Tan, Pengju ; Hou, Xiaohu ; Zhang, Zhongfang ; Yu, Shunjie ; Sun, Haiding ; Xu, Guangwei ; Miao, Xiangshui ; Xue, Kanhao ; Long, Shibing ; Liu, Ming</creatorcontrib><description>In recent years, Ga2O3 solar-blind photodetectors (SBPDs) have received great attention for their potential applications in solar-blind imaging, deep space exploration, confidential space communication, etc. In this work, we demonstrated an ultra-high-performance ε-Ga2O3 metal–semiconductor–metal (MSM) SBPD. The fabricated photodetectors exhibited a record-high responsivity and fast decay time of 230 A/W and 24 ms, respectively, compared with MSM-structured Ga2O3 photodetectors reported to date. Additionally, the ε-Ga2O3 MSM SBPD presents an ultrahigh detectivity of 1.2 × 1015 Jones with a low dark current of 23.5 pA under an operation voltage of 6 V, suggesting its strong capability of detecting an ultraweak signal. The high sensitivity and wavelength selectivity of the photodetector were further confirmed by the record-high responsivity rejection ratio (R 250 nm/R 400 nm) of 1.2 × 105. From the temperature-dependent electrical characteristics in the dark, the thermionic field emission and Poole–Frenkel emission were found to be responsible for the current transport in the low and high electric field regimes, respectively. In addition, the gain mechanism was revealed by the Schottky barrier lowering effect due to the defect states at the interface of the metal contact and Ga2O3 or in the bulk of Ga2O3 based on current transport mechanism and density functional theory calculations. These results facilitate a better understanding of ε-Ga2O3 photoelectronic devices and provide possible guidance for promoting their performance in future solar-blind detection applications.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.9b01727</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; Optics ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science & Technology ; Science & Technology - Other Topics ; Technology</subject><ispartof>ACS photonics, 2020-03, Vol.7 (3), p.812-820</ispartof><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>180</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526350900033</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-a196t-11572fb29c5ee0b253e10a4ddcd7456e08bcddae333aec58be8ab05ef649799f3</cites><orcidid>0000-0002-4691-3097 ; 0000-0002-2894-7912 ; 0000-0001-8664-666X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphotonics.9b01727$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphotonics.9b01727$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,28253,56743,56793</link.rule.ids></links><search><creatorcontrib>Qin, Yuan</creatorcontrib><creatorcontrib>Li, Liheng</creatorcontrib><creatorcontrib>Zhao, Xiaolong</creatorcontrib><creatorcontrib>Tompa, Gary S</creatorcontrib><creatorcontrib>Dong, Hang</creatorcontrib><creatorcontrib>Jian, Guangzhong</creatorcontrib><creatorcontrib>He, Qiming</creatorcontrib><creatorcontrib>Tan, Pengju</creatorcontrib><creatorcontrib>Hou, Xiaohu</creatorcontrib><creatorcontrib>Zhang, Zhongfang</creatorcontrib><creatorcontrib>Yu, Shunjie</creatorcontrib><creatorcontrib>Sun, Haiding</creatorcontrib><creatorcontrib>Xu, Guangwei</creatorcontrib><creatorcontrib>Miao, Xiangshui</creatorcontrib><creatorcontrib>Xue, Kanhao</creatorcontrib><creatorcontrib>Long, Shibing</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>Metal–Semiconductor–Metal ε‑Ga2O3 Solar-Blind Photodetectors with a Record-High Responsivity Rejection Ratio and Their Gain Mechanism</title><title>ACS photonics</title><addtitle>ACS PHOTONICS</addtitle><addtitle>ACS Photonics</addtitle><description>In recent years, Ga2O3 solar-blind photodetectors (SBPDs) have received great attention for their potential applications in solar-blind imaging, deep space exploration, confidential space communication, etc. In this work, we demonstrated an ultra-high-performance ε-Ga2O3 metal–semiconductor–metal (MSM) SBPD. The fabricated photodetectors exhibited a record-high responsivity and fast decay time of 230 A/W and 24 ms, respectively, compared with MSM-structured Ga2O3 photodetectors reported to date. Additionally, the ε-Ga2O3 MSM SBPD presents an ultrahigh detectivity of 1.2 × 1015 Jones with a low dark current of 23.5 pA under an operation voltage of 6 V, suggesting its strong capability of detecting an ultraweak signal. The high sensitivity and wavelength selectivity of the photodetector were further confirmed by the record-high responsivity rejection ratio (R 250 nm/R 400 nm) of 1.2 × 105. From the temperature-dependent electrical characteristics in the dark, the thermionic field emission and Poole–Frenkel emission were found to be responsible for the current transport in the low and high electric field regimes, respectively. In addition, the gain mechanism was revealed by the Schottky barrier lowering effect due to the defect states at the interface of the metal contact and Ga2O3 or in the bulk of Ga2O3 based on current transport mechanism and density functional theory calculations. These results facilitate a better understanding of ε-Ga2O3 photoelectronic devices and provide possible guidance for promoting their performance in future solar-blind detection applications.</description><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>Optics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNUUtOwzAUjBBIVKU3YOE9SvEnTpolVFCQqIpaWEeO_UJctXYVu1Td9QBsEGfhGhyiJ8GhLFiymnlP874TRecE9wmm5FJIt6qtt0ZL189LTDKaHUUdyhiOE0zp8R9-GvWcm2OMCeYsTZNO9DYGLxb73ccMllpao9bS2ybEP3n09bnfvY8EnTA0swvRxNcLbRR6bAcq8NCKHdpoXyOBpiBto-I7_VIH7lbWOP2q_TYE86DU1qCpCIBEaPFUg27QSGiDxiBrYbRbnkUnlVg46P1iN3q-vXka3sUPk9H98OohFiRPfUwIz2hV0lxyAFxSzoBgkSglVZbwFPCglEoJYIwJkHxQwkCUmEOVJnmW5xXrRoND3w2UtnJSg5FQrBq9FM22CO_hNGUc54ExNtS-XdoM7dr4UHrx_9Kgxgd1MKmY23VjwlkFwUXrXPHXueLXOfYN6vKURA</recordid><startdate>20200318</startdate><enddate>20200318</enddate><creator>Qin, Yuan</creator><creator>Li, Liheng</creator><creator>Zhao, Xiaolong</creator><creator>Tompa, Gary S</creator><creator>Dong, Hang</creator><creator>Jian, Guangzhong</creator><creator>He, Qiming</creator><creator>Tan, Pengju</creator><creator>Hou, Xiaohu</creator><creator>Zhang, Zhongfang</creator><creator>Yu, Shunjie</creator><creator>Sun, Haiding</creator><creator>Xu, Guangwei</creator><creator>Miao, Xiangshui</creator><creator>Xue, Kanhao</creator><creator>Long, Shibing</creator><creator>Liu, Ming</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><orcidid>https://orcid.org/0000-0002-4691-3097</orcidid><orcidid>https://orcid.org/0000-0002-2894-7912</orcidid><orcidid>https://orcid.org/0000-0001-8664-666X</orcidid></search><sort><creationdate>20200318</creationdate><title>Metal–Semiconductor–Metal ε‑Ga2O3 Solar-Blind Photodetectors with a Record-High Responsivity Rejection Ratio and Their Gain Mechanism</title><author>Qin, Yuan ; Li, Liheng ; Zhao, Xiaolong ; Tompa, Gary S ; Dong, Hang ; Jian, Guangzhong ; He, Qiming ; Tan, Pengju ; Hou, Xiaohu ; Zhang, Zhongfang ; Yu, Shunjie ; Sun, Haiding ; Xu, Guangwei ; Miao, Xiangshui ; Xue, Kanhao ; Long, Shibing ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a196t-11572fb29c5ee0b253e10a4ddcd7456e08bcddae333aec58be8ab05ef649799f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>Optics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Qin, Yuan</creatorcontrib><creatorcontrib>Li, Liheng</creatorcontrib><creatorcontrib>Zhao, Xiaolong</creatorcontrib><creatorcontrib>Tompa, Gary S</creatorcontrib><creatorcontrib>Dong, Hang</creatorcontrib><creatorcontrib>Jian, Guangzhong</creatorcontrib><creatorcontrib>He, Qiming</creatorcontrib><creatorcontrib>Tan, Pengju</creatorcontrib><creatorcontrib>Hou, Xiaohu</creatorcontrib><creatorcontrib>Zhang, Zhongfang</creatorcontrib><creatorcontrib>Yu, Shunjie</creatorcontrib><creatorcontrib>Sun, Haiding</creatorcontrib><creatorcontrib>Xu, Guangwei</creatorcontrib><creatorcontrib>Miao, Xiangshui</creatorcontrib><creatorcontrib>Xue, Kanhao</creatorcontrib><creatorcontrib>Long, Shibing</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Yuan</au><au>Li, Liheng</au><au>Zhao, Xiaolong</au><au>Tompa, Gary S</au><au>Dong, Hang</au><au>Jian, Guangzhong</au><au>He, Qiming</au><au>Tan, Pengju</au><au>Hou, Xiaohu</au><au>Zhang, Zhongfang</au><au>Yu, Shunjie</au><au>Sun, Haiding</au><au>Xu, Guangwei</au><au>Miao, Xiangshui</au><au>Xue, Kanhao</au><au>Long, Shibing</au><au>Liu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Semiconductor–Metal ε‑Ga2O3 Solar-Blind Photodetectors with a Record-High Responsivity Rejection Ratio and Their Gain Mechanism</atitle><jtitle>ACS photonics</jtitle><stitle>ACS PHOTONICS</stitle><addtitle>ACS Photonics</addtitle><date>2020-03-18</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>812</spage><epage>820</epage><pages>812-820</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>In recent years, Ga2O3 solar-blind photodetectors (SBPDs) have received great attention for their potential applications in solar-blind imaging, deep space exploration, confidential space communication, etc. In this work, we demonstrated an ultra-high-performance ε-Ga2O3 metal–semiconductor–metal (MSM) SBPD. The fabricated photodetectors exhibited a record-high responsivity and fast decay time of 230 A/W and 24 ms, respectively, compared with MSM-structured Ga2O3 photodetectors reported to date. Additionally, the ε-Ga2O3 MSM SBPD presents an ultrahigh detectivity of 1.2 × 1015 Jones with a low dark current of 23.5 pA under an operation voltage of 6 V, suggesting its strong capability of detecting an ultraweak signal. The high sensitivity and wavelength selectivity of the photodetector were further confirmed by the record-high responsivity rejection ratio (R 250 nm/R 400 nm) of 1.2 × 105. From the temperature-dependent electrical characteristics in the dark, the thermionic field emission and Poole–Frenkel emission were found to be responsible for the current transport in the low and high electric field regimes, respectively. In addition, the gain mechanism was revealed by the Schottky barrier lowering effect due to the defect states at the interface of the metal contact and Ga2O3 or in the bulk of Ga2O3 based on current transport mechanism and density functional theory calculations. These results facilitate a better understanding of ε-Ga2O3 photoelectronic devices and provide possible guidance for promoting their performance in future solar-blind detection applications.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.9b01727</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4691-3097</orcidid><orcidid>https://orcid.org/0000-0002-2894-7912</orcidid><orcidid>https://orcid.org/0000-0001-8664-666X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-4022 |
ispartof | ACS photonics, 2020-03, Vol.7 (3), p.812-820 |
issn | 2330-4022 2330-4022 |
language | eng |
recordid | cdi_webofscience_primary_000526350900033CitationCount |
source | ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology Optics Physical Sciences Physics Physics, Applied Physics, Condensed Matter Science & Technology Science & Technology - Other Topics Technology |
title | Metal–Semiconductor–Metal ε‑Ga2O3 Solar-Blind Photodetectors with a Record-High Responsivity Rejection Ratio and Their Gain Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Semiconductor%E2%80%93Metal%20%CE%B5%E2%80%91Ga2O3%20Solar-Blind%20Photodetectors%20with%20a%20Record-High%20Responsivity%20Rejection%20Ratio%20and%20Their%20Gain%20Mechanism&rft.jtitle=ACS%20photonics&rft.au=Qin,%20Yuan&rft.date=2020-03-18&rft.volume=7&rft.issue=3&rft.spage=812&rft.epage=820&rft.pages=812-820&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.9b01727&rft_dat=%3Cacs_webof%3Eb696590874%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |