Therapeutic cobalt ion incorporated in poly(vinyl alcohol)/bioactive glass scaffolds for tissue engineering

Hybrid scaffolds appear as a promising strategy to accelerate bone tissue repair due to their biocompatibility and to combine physical, mechanical and biological characteristics similar to those of human bone tissue. However, there are no studies in hybrid scaffolds using the sol–gel method and a fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2020-07, Vol.55 (20), p.8710-8727
Hauptverfasser: de Laia, Andréia Grossi Santos, Barrioni, Breno Rocha, Valverde, Thalita Marcolan, de Goes, Alfredo Miranda, de Sá, Marcos Augusto, Pereira, Marivalda de Magalhães
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8727
container_issue 20
container_start_page 8710
container_title Journal of materials science
container_volume 55
creator de Laia, Andréia Grossi Santos
Barrioni, Breno Rocha
Valverde, Thalita Marcolan
de Goes, Alfredo Miranda
de Sá, Marcos Augusto
Pereira, Marivalda de Magalhães
description Hybrid scaffolds appear as a promising strategy to accelerate bone tissue repair due to their biocompatibility and to combine physical, mechanical and biological characteristics similar to those of human bone tissue. However, there are no studies in hybrid scaffolds using the sol–gel method and a foaming system, with the direct incorporation of cobalt therapeutic ion. In this work, novel porous polyvinyl alcohol polymer (PVA)/bioactive glasses (BG) hybrids scaffolds containing cobalt were obtained, combining the PVA non-toxicity, non-carcinogenicity and processability to the BG bioactivity and osteogenic properties and Co angiogenic effect by the sol–gel and foaming processing method, in order to obtain a new scaffold with angiogenic properties. The effects of Co incorporation on scaffold structure, bioactivity and ion release were evaluated. Cell viability and cell growth assay were performed on human umbilical vein endothelial cells, demonstrating excellent mitochondrial activity without cytotoxicity and cell-friendly environment. Hybrid scaffolds supported fast ion release and an elastic modulus of 20.19 MPa. The presence of cobalt was confirmed by SEM and EDS. Co-incorporated samples showed high porosity and favorable pore size. PVA–BG hybrid scaffolds containing Co showed ionic release rate in the therapeutic range and are promising for angiogenesis in tissue engineering applications.
doi_str_mv 10.1007/s10853-020-04644-0
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000526241800005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621504945</galeid><sourcerecordid>A621504945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-fc780417e0cdbe2672970d6c4e706db7faf4d290d1423dd67c44531a729525803</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EEsPAC7CKxAaE0h5fEk-W1ahcpEpsytpy7OOpS2oH2ymat8chCHYIeXHso-_3ufyEvKZwQQHkZaZw6HgLDFoQvRAtPCE72kneigPwp2QHwFjLRE-fkxc53wNAJxndkW-3d5j0jEvxpjFx1FNpfAyNDyamOSZd0NZHM8fp_PbRh_PU6MnEuzi9uxx91Kb4R2xOk865yUY7FyebGxdTU3zOCzYYTj4gJh9OL8kzp6eMr37HPfn64fr2-Km9-fLx8_HqpjV86ErrjDyAoBLB2BFZL9kgwfZGoITejtJpJywbwFLBuLW9NEJ0nOrKdayr4-7Jm-3fOcXvC-ai7uOSQi2pGB8YGzhnrFIXG3XSEyofXCxJm3osPngTAzpf81c9ox2IoVbYE7YJTIo5J3RqTv5Bp7OioFYX1OaCqi6oXy6otZfDJvqBY3TZeAwG_whXG1jPBD3Aej36okvd_jEuoVTp-_-XVppvdJ7XXWP6O_Q_2vsJU1SrdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392293322</pqid></control><display><type>article</type><title>Therapeutic cobalt ion incorporated in poly(vinyl alcohol)/bioactive glass scaffolds for tissue engineering</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>de Laia, Andréia Grossi Santos ; Barrioni, Breno Rocha ; Valverde, Thalita Marcolan ; de Goes, Alfredo Miranda ; de Sá, Marcos Augusto ; Pereira, Marivalda de Magalhães</creator><creatorcontrib>de Laia, Andréia Grossi Santos ; Barrioni, Breno Rocha ; Valverde, Thalita Marcolan ; de Goes, Alfredo Miranda ; de Sá, Marcos Augusto ; Pereira, Marivalda de Magalhães</creatorcontrib><description>Hybrid scaffolds appear as a promising strategy to accelerate bone tissue repair due to their biocompatibility and to combine physical, mechanical and biological characteristics similar to those of human bone tissue. However, there are no studies in hybrid scaffolds using the sol–gel method and a foaming system, with the direct incorporation of cobalt therapeutic ion. In this work, novel porous polyvinyl alcohol polymer (PVA)/bioactive glasses (BG) hybrids scaffolds containing cobalt were obtained, combining the PVA non-toxicity, non-carcinogenicity and processability to the BG bioactivity and osteogenic properties and Co angiogenic effect by the sol–gel and foaming processing method, in order to obtain a new scaffold with angiogenic properties. The effects of Co incorporation on scaffold structure, bioactivity and ion release were evaluated. Cell viability and cell growth assay were performed on human umbilical vein endothelial cells, demonstrating excellent mitochondrial activity without cytotoxicity and cell-friendly environment. Hybrid scaffolds supported fast ion release and an elastic modulus of 20.19 MPa. The presence of cobalt was confirmed by SEM and EDS. Co-incorporated samples showed high porosity and favorable pore size. PVA–BG hybrid scaffolds containing Co showed ionic release rate in the therapeutic range and are promising for angiogenesis in tissue engineering applications.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-04644-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biocompatibility ; Bioglass ; Biological activity ; Biomedical materials ; Bones ; Carcinogenicity ; Carcinogens ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cobalt ; Crystallography and Scattering Methods ; Endothelial cells ; Ethylenediaminetetraacetic acid ; Foaming ; Health aspects ; Human performance ; Incorporation ; Materials for Life Sciences ; Materials Science ; Materials Science, Multidisciplinary ; Modulus of elasticity ; Polymer Sciences ; Polyvinyl alcohol ; Pore size ; Porosity ; Scaffolds ; Science &amp; Technology ; Sol-gel processes ; Solid Mechanics ; Technology ; Tissue engineering ; Toxicity</subject><ispartof>Journal of materials science, 2020-07, Vol.55 (20), p.8710-8727</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526241800005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c395t-fc780417e0cdbe2672970d6c4e706db7faf4d290d1423dd67c44531a729525803</citedby><cites>FETCH-LOGICAL-c395t-fc780417e0cdbe2672970d6c4e706db7faf4d290d1423dd67c44531a729525803</cites><orcidid>0000-0003-0858-6061 ; 0000-0002-8681-6451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-04644-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-04644-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,28255,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>de Laia, Andréia Grossi Santos</creatorcontrib><creatorcontrib>Barrioni, Breno Rocha</creatorcontrib><creatorcontrib>Valverde, Thalita Marcolan</creatorcontrib><creatorcontrib>de Goes, Alfredo Miranda</creatorcontrib><creatorcontrib>de Sá, Marcos Augusto</creatorcontrib><creatorcontrib>Pereira, Marivalda de Magalhães</creatorcontrib><title>Therapeutic cobalt ion incorporated in poly(vinyl alcohol)/bioactive glass scaffolds for tissue engineering</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><addtitle>J MATER SCI</addtitle><description>Hybrid scaffolds appear as a promising strategy to accelerate bone tissue repair due to their biocompatibility and to combine physical, mechanical and biological characteristics similar to those of human bone tissue. However, there are no studies in hybrid scaffolds using the sol–gel method and a foaming system, with the direct incorporation of cobalt therapeutic ion. In this work, novel porous polyvinyl alcohol polymer (PVA)/bioactive glasses (BG) hybrids scaffolds containing cobalt were obtained, combining the PVA non-toxicity, non-carcinogenicity and processability to the BG bioactivity and osteogenic properties and Co angiogenic effect by the sol–gel and foaming processing method, in order to obtain a new scaffold with angiogenic properties. The effects of Co incorporation on scaffold structure, bioactivity and ion release were evaluated. Cell viability and cell growth assay were performed on human umbilical vein endothelial cells, demonstrating excellent mitochondrial activity without cytotoxicity and cell-friendly environment. Hybrid scaffolds supported fast ion release and an elastic modulus of 20.19 MPa. The presence of cobalt was confirmed by SEM and EDS. Co-incorporated samples showed high porosity and favorable pore size. PVA–BG hybrid scaffolds containing Co showed ionic release rate in the therapeutic range and are promising for angiogenesis in tissue engineering applications.</description><subject>Biocompatibility</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Bones</subject><subject>Carcinogenicity</subject><subject>Carcinogens</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cobalt</subject><subject>Crystallography and Scattering Methods</subject><subject>Endothelial cells</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Foaming</subject><subject>Health aspects</subject><subject>Human performance</subject><subject>Incorporation</subject><subject>Materials for Life Sciences</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Modulus of elasticity</subject><subject>Polymer Sciences</subject><subject>Polyvinyl alcohol</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Scaffolds</subject><subject>Science &amp; Technology</subject><subject>Sol-gel processes</subject><subject>Solid Mechanics</subject><subject>Technology</subject><subject>Tissue engineering</subject><subject>Toxicity</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkctu1DAUhi0EEsPAC7CKxAaE0h5fEk-W1ahcpEpsytpy7OOpS2oH2ymat8chCHYIeXHso-_3ufyEvKZwQQHkZaZw6HgLDFoQvRAtPCE72kneigPwp2QHwFjLRE-fkxc53wNAJxndkW-3d5j0jEvxpjFx1FNpfAyNDyamOSZd0NZHM8fp_PbRh_PU6MnEuzi9uxx91Kb4R2xOk865yUY7FyebGxdTU3zOCzYYTj4gJh9OL8kzp6eMr37HPfn64fr2-Km9-fLx8_HqpjV86ErrjDyAoBLB2BFZL9kgwfZGoITejtJpJywbwFLBuLW9NEJ0nOrKdayr4-7Jm-3fOcXvC-ai7uOSQi2pGB8YGzhnrFIXG3XSEyofXCxJm3osPngTAzpf81c9ox2IoVbYE7YJTIo5J3RqTv5Bp7OioFYX1OaCqi6oXy6otZfDJvqBY3TZeAwG_whXG1jPBD3Aej36okvd_jEuoVTp-_-XVppvdJ7XXWP6O_Q_2vsJU1SrdA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>de Laia, Andréia Grossi Santos</creator><creator>Barrioni, Breno Rocha</creator><creator>Valverde, Thalita Marcolan</creator><creator>de Goes, Alfredo Miranda</creator><creator>de Sá, Marcos Augusto</creator><creator>Pereira, Marivalda de Magalhães</creator><general>Springer US</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0858-6061</orcidid><orcidid>https://orcid.org/0000-0002-8681-6451</orcidid></search><sort><creationdate>20200701</creationdate><title>Therapeutic cobalt ion incorporated in poly(vinyl alcohol)/bioactive glass scaffolds for tissue engineering</title><author>de Laia, Andréia Grossi Santos ; Barrioni, Breno Rocha ; Valverde, Thalita Marcolan ; de Goes, Alfredo Miranda ; de Sá, Marcos Augusto ; Pereira, Marivalda de Magalhães</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-fc780417e0cdbe2672970d6c4e706db7faf4d290d1423dd67c44531a729525803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Bones</topic><topic>Carcinogenicity</topic><topic>Carcinogens</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cobalt</topic><topic>Crystallography and Scattering Methods</topic><topic>Endothelial cells</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Foaming</topic><topic>Health aspects</topic><topic>Human performance</topic><topic>Incorporation</topic><topic>Materials for Life Sciences</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Modulus of elasticity</topic><topic>Polymer Sciences</topic><topic>Polyvinyl alcohol</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Scaffolds</topic><topic>Science &amp; Technology</topic><topic>Sol-gel processes</topic><topic>Solid Mechanics</topic><topic>Technology</topic><topic>Tissue engineering</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Laia, Andréia Grossi Santos</creatorcontrib><creatorcontrib>Barrioni, Breno Rocha</creatorcontrib><creatorcontrib>Valverde, Thalita Marcolan</creatorcontrib><creatorcontrib>de Goes, Alfredo Miranda</creatorcontrib><creatorcontrib>de Sá, Marcos Augusto</creatorcontrib><creatorcontrib>Pereira, Marivalda de Magalhães</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Laia, Andréia Grossi Santos</au><au>Barrioni, Breno Rocha</au><au>Valverde, Thalita Marcolan</au><au>de Goes, Alfredo Miranda</au><au>de Sá, Marcos Augusto</au><au>Pereira, Marivalda de Magalhães</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapeutic cobalt ion incorporated in poly(vinyl alcohol)/bioactive glass scaffolds for tissue engineering</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><stitle>J MATER SCI</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>55</volume><issue>20</issue><spage>8710</spage><epage>8727</epage><pages>8710-8727</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Hybrid scaffolds appear as a promising strategy to accelerate bone tissue repair due to their biocompatibility and to combine physical, mechanical and biological characteristics similar to those of human bone tissue. However, there are no studies in hybrid scaffolds using the sol–gel method and a foaming system, with the direct incorporation of cobalt therapeutic ion. In this work, novel porous polyvinyl alcohol polymer (PVA)/bioactive glasses (BG) hybrids scaffolds containing cobalt were obtained, combining the PVA non-toxicity, non-carcinogenicity and processability to the BG bioactivity and osteogenic properties and Co angiogenic effect by the sol–gel and foaming processing method, in order to obtain a new scaffold with angiogenic properties. The effects of Co incorporation on scaffold structure, bioactivity and ion release were evaluated. Cell viability and cell growth assay were performed on human umbilical vein endothelial cells, demonstrating excellent mitochondrial activity without cytotoxicity and cell-friendly environment. Hybrid scaffolds supported fast ion release and an elastic modulus of 20.19 MPa. The presence of cobalt was confirmed by SEM and EDS. Co-incorporated samples showed high porosity and favorable pore size. PVA–BG hybrid scaffolds containing Co showed ionic release rate in the therapeutic range and are promising for angiogenesis in tissue engineering applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-04644-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0858-6061</orcidid><orcidid>https://orcid.org/0000-0002-8681-6451</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2020-07, Vol.55 (20), p.8710-8727
issn 0022-2461
1573-4803
language eng
recordid cdi_webofscience_primary_000526241800005
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Biocompatibility
Bioglass
Biological activity
Biomedical materials
Bones
Carcinogenicity
Carcinogens
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Cobalt
Crystallography and Scattering Methods
Endothelial cells
Ethylenediaminetetraacetic acid
Foaming
Health aspects
Human performance
Incorporation
Materials for Life Sciences
Materials Science
Materials Science, Multidisciplinary
Modulus of elasticity
Polymer Sciences
Polyvinyl alcohol
Pore size
Porosity
Scaffolds
Science & Technology
Sol-gel processes
Solid Mechanics
Technology
Tissue engineering
Toxicity
title Therapeutic cobalt ion incorporated in poly(vinyl alcohol)/bioactive glass scaffolds for tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapeutic%20cobalt%20ion%20incorporated%20in%20poly(vinyl%20alcohol)/bioactive%20glass%20scaffolds%20for%20tissue%20engineering&rft.jtitle=Journal%20of%20materials%20science&rft.au=de%20Laia,%20Andr%C3%A9ia%20Grossi%20Santos&rft.date=2020-07-01&rft.volume=55&rft.issue=20&rft.spage=8710&rft.epage=8727&rft.pages=8710-8727&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-04644-0&rft_dat=%3Cgale_webof%3EA621504945%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392293322&rft_id=info:pmid/&rft_galeid=A621504945&rfr_iscdi=true