Accelerated full-waveform inversion using dynamic mini-batches
SUMMARY We present an accelerated full-waveform inversion based on dynamic mini-batch optimization, which naturally exploits redundancies in observed data from different sources. The method rests on the selection of quasi-random subsets (mini-batches) of sources, used to approximate the misfit and t...
Gespeichert in:
Veröffentlicht in: | Geophysical journal international 2020-05, Vol.221 (2), p.1427-1438 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1438 |
---|---|
container_issue | 2 |
container_start_page | 1427 |
container_title | Geophysical journal international |
container_volume | 221 |
creator | van Herwaarden, Dirk Philip Boehm, Christian Afanasiev, Michael Thrastarson, Solvi Krischer, Lion Trampert, Jeannot Fichtner, Andreas |
description | SUMMARY
We present an accelerated full-waveform inversion based on dynamic mini-batch optimization, which naturally exploits redundancies in observed data from different sources. The method rests on the selection of quasi-random subsets (mini-batches) of sources, used to approximate the misfit and the gradient of the complete data set. The size of the mini-batch is dynamically controlled by the desired quality of the gradient approximation. Within each mini-batch, redundancy is minimized by selecting sources with the largest angular differences between their respective gradients, and spatial coverage is maximized by selecting candidate events with Mitchell’s best-candidate algorithm. Information from sources not included in a specific mini-batch is incorporated into each gradient calculation through a quasi-Newton approximation of the Hessian, and a consistent misfit measure is achieved through the inclusion of a control group of sources. By design, the dynamic mini-batch approach has several main advantages: (1) The use of mini-batches with adaptive size ensures that an optimally small number of sources is used in each iteration, thus potentially leading to significant computational savings; (2) curvature information is accumulated and exploited during the inversion, using a randomized quasi-Newton method; (3) new data can be incorporated without the need to re-invert the complete data set, thereby enabling an evolutionary mode of full-waveform inversion. We illustrate our method using synthetic and real-data inversions for upper-mantle structure beneath the African Plate. In these specific examples, the dynamic mini-batch approach requires around 20 per cent of the computational resources in order to achieve data and model misfits that are comparable to those achieved by a standard full-waveform inversion where all sources are used in each iteration. |
doi_str_mv | 10.1093/gji/ggaa079 |
format | Article |
fullrecord | <record><control><sourceid>oup_webof</sourceid><recordid>TN_cdi_webofscience_primary_000525949600045CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggaa079</oup_id><sourcerecordid>10.1093/gji/ggaa079</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-8b22e7e4aae36618b87288ba0339801222e4ce9c910f6144e67cbb153985cbef3</originalsourceid><addsrcrecordid>eNqNj01Lw0AQhhdRsFZP_oGcvMja3exHdi9CCVaFgheF3sLudhK3JJuSTVr674206E08zcA878w8CN1S8kCJZrNq42dVZQzJ9BmaUCYFTrlcnaMJ0UJiwcnqEl3FuCGEcsrVBD3OnYMaOtPDOimHusZ7s4Oy7ZrEhx100bchGaIPVbI-BNN4lzQ-eGxN7z4hXqOL0tQRbk51ij4WT-_5C16-Pb_m8yU2LOU9VjZNIQNuDDApqbIqS5WyhjCmFaHpOOUOtNOUlJJyDjJz1lIxToWzULIpuj_udV0bYwdlse18Y7pDQUnxrV6M6sVJfaTVkd6DbcvoPAQHPwlCiEiF5lqOHRe5700_WubtEPrfQ_-JjvTdkW6H7Z8ffQEOinuy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accelerated full-waveform inversion using dynamic mini-batches</title><source>Access via Oxford University Press (Open Access Collection)</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>van Herwaarden, Dirk Philip ; Boehm, Christian ; Afanasiev, Michael ; Thrastarson, Solvi ; Krischer, Lion ; Trampert, Jeannot ; Fichtner, Andreas</creator><creatorcontrib>van Herwaarden, Dirk Philip ; Boehm, Christian ; Afanasiev, Michael ; Thrastarson, Solvi ; Krischer, Lion ; Trampert, Jeannot ; Fichtner, Andreas</creatorcontrib><description>SUMMARY
We present an accelerated full-waveform inversion based on dynamic mini-batch optimization, which naturally exploits redundancies in observed data from different sources. The method rests on the selection of quasi-random subsets (mini-batches) of sources, used to approximate the misfit and the gradient of the complete data set. The size of the mini-batch is dynamically controlled by the desired quality of the gradient approximation. Within each mini-batch, redundancy is minimized by selecting sources with the largest angular differences between their respective gradients, and spatial coverage is maximized by selecting candidate events with Mitchell’s best-candidate algorithm. Information from sources not included in a specific mini-batch is incorporated into each gradient calculation through a quasi-Newton approximation of the Hessian, and a consistent misfit measure is achieved through the inclusion of a control group of sources. By design, the dynamic mini-batch approach has several main advantages: (1) The use of mini-batches with adaptive size ensures that an optimally small number of sources is used in each iteration, thus potentially leading to significant computational savings; (2) curvature information is accumulated and exploited during the inversion, using a randomized quasi-Newton method; (3) new data can be incorporated without the need to re-invert the complete data set, thereby enabling an evolutionary mode of full-waveform inversion. We illustrate our method using synthetic and real-data inversions for upper-mantle structure beneath the African Plate. In these specific examples, the dynamic mini-batch approach requires around 20 per cent of the computational resources in order to achieve data and model misfits that are comparable to those achieved by a standard full-waveform inversion where all sources are used in each iteration.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggaa079</identifier><language>eng</language><publisher>OXFORD: Oxford University Press</publisher><subject>Geochemistry & Geophysics ; Physical Sciences ; Science & Technology</subject><ispartof>Geophysical journal international, 2020-05, Vol.221 (2), p.1427-1438</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>33</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000525949600045</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a324t-8b22e7e4aae36618b87288ba0339801222e4ce9c910f6144e67cbb153985cbef3</citedby><cites>FETCH-LOGICAL-a324t-8b22e7e4aae36618b87288ba0339801222e4ce9c910f6144e67cbb153985cbef3</cites><orcidid>0000-0003-0931-6776 ; 0000-0001-5867-6634 ; 0000-0002-5868-9491 ; 0000-0002-5050-7454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1605,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>van Herwaarden, Dirk Philip</creatorcontrib><creatorcontrib>Boehm, Christian</creatorcontrib><creatorcontrib>Afanasiev, Michael</creatorcontrib><creatorcontrib>Thrastarson, Solvi</creatorcontrib><creatorcontrib>Krischer, Lion</creatorcontrib><creatorcontrib>Trampert, Jeannot</creatorcontrib><creatorcontrib>Fichtner, Andreas</creatorcontrib><title>Accelerated full-waveform inversion using dynamic mini-batches</title><title>Geophysical journal international</title><addtitle>GEOPHYS J INT</addtitle><description>SUMMARY
We present an accelerated full-waveform inversion based on dynamic mini-batch optimization, which naturally exploits redundancies in observed data from different sources. The method rests on the selection of quasi-random subsets (mini-batches) of sources, used to approximate the misfit and the gradient of the complete data set. The size of the mini-batch is dynamically controlled by the desired quality of the gradient approximation. Within each mini-batch, redundancy is minimized by selecting sources with the largest angular differences between their respective gradients, and spatial coverage is maximized by selecting candidate events with Mitchell’s best-candidate algorithm. Information from sources not included in a specific mini-batch is incorporated into each gradient calculation through a quasi-Newton approximation of the Hessian, and a consistent misfit measure is achieved through the inclusion of a control group of sources. By design, the dynamic mini-batch approach has several main advantages: (1) The use of mini-batches with adaptive size ensures that an optimally small number of sources is used in each iteration, thus potentially leading to significant computational savings; (2) curvature information is accumulated and exploited during the inversion, using a randomized quasi-Newton method; (3) new data can be incorporated without the need to re-invert the complete data set, thereby enabling an evolutionary mode of full-waveform inversion. We illustrate our method using synthetic and real-data inversions for upper-mantle structure beneath the African Plate. In these specific examples, the dynamic mini-batch approach requires around 20 per cent of the computational resources in order to achieve data and model misfits that are comparable to those achieved by a standard full-waveform inversion where all sources are used in each iteration.</description><subject>Geochemistry & Geophysics</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNj01Lw0AQhhdRsFZP_oGcvMja3exHdi9CCVaFgheF3sLudhK3JJuSTVr674206E08zcA878w8CN1S8kCJZrNq42dVZQzJ9BmaUCYFTrlcnaMJ0UJiwcnqEl3FuCGEcsrVBD3OnYMaOtPDOimHusZ7s4Oy7ZrEhx100bchGaIPVbI-BNN4lzQ-eGxN7z4hXqOL0tQRbk51ij4WT-_5C16-Pb_m8yU2LOU9VjZNIQNuDDApqbIqS5WyhjCmFaHpOOUOtNOUlJJyDjJz1lIxToWzULIpuj_udV0bYwdlse18Y7pDQUnxrV6M6sVJfaTVkd6DbcvoPAQHPwlCiEiF5lqOHRe5700_WubtEPrfQ_-JjvTdkW6H7Z8ffQEOinuy</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>van Herwaarden, Dirk Philip</creator><creator>Boehm, Christian</creator><creator>Afanasiev, Michael</creator><creator>Thrastarson, Solvi</creator><creator>Krischer, Lion</creator><creator>Trampert, Jeannot</creator><creator>Fichtner, Andreas</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>TOX</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0931-6776</orcidid><orcidid>https://orcid.org/0000-0001-5867-6634</orcidid><orcidid>https://orcid.org/0000-0002-5868-9491</orcidid><orcidid>https://orcid.org/0000-0002-5050-7454</orcidid></search><sort><creationdate>20200501</creationdate><title>Accelerated full-waveform inversion using dynamic mini-batches</title><author>van Herwaarden, Dirk Philip ; Boehm, Christian ; Afanasiev, Michael ; Thrastarson, Solvi ; Krischer, Lion ; Trampert, Jeannot ; Fichtner, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-8b22e7e4aae36618b87288ba0339801222e4ce9c910f6144e67cbb153985cbef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Geochemistry & Geophysics</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Herwaarden, Dirk Philip</creatorcontrib><creatorcontrib>Boehm, Christian</creatorcontrib><creatorcontrib>Afanasiev, Michael</creatorcontrib><creatorcontrib>Thrastarson, Solvi</creatorcontrib><creatorcontrib>Krischer, Lion</creatorcontrib><creatorcontrib>Trampert, Jeannot</creatorcontrib><creatorcontrib>Fichtner, Andreas</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Herwaarden, Dirk Philip</au><au>Boehm, Christian</au><au>Afanasiev, Michael</au><au>Thrastarson, Solvi</au><au>Krischer, Lion</au><au>Trampert, Jeannot</au><au>Fichtner, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated full-waveform inversion using dynamic mini-batches</atitle><jtitle>Geophysical journal international</jtitle><stitle>GEOPHYS J INT</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>221</volume><issue>2</issue><spage>1427</spage><epage>1438</epage><pages>1427-1438</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY
We present an accelerated full-waveform inversion based on dynamic mini-batch optimization, which naturally exploits redundancies in observed data from different sources. The method rests on the selection of quasi-random subsets (mini-batches) of sources, used to approximate the misfit and the gradient of the complete data set. The size of the mini-batch is dynamically controlled by the desired quality of the gradient approximation. Within each mini-batch, redundancy is minimized by selecting sources with the largest angular differences between their respective gradients, and spatial coverage is maximized by selecting candidate events with Mitchell’s best-candidate algorithm. Information from sources not included in a specific mini-batch is incorporated into each gradient calculation through a quasi-Newton approximation of the Hessian, and a consistent misfit measure is achieved through the inclusion of a control group of sources. By design, the dynamic mini-batch approach has several main advantages: (1) The use of mini-batches with adaptive size ensures that an optimally small number of sources is used in each iteration, thus potentially leading to significant computational savings; (2) curvature information is accumulated and exploited during the inversion, using a randomized quasi-Newton method; (3) new data can be incorporated without the need to re-invert the complete data set, thereby enabling an evolutionary mode of full-waveform inversion. We illustrate our method using synthetic and real-data inversions for upper-mantle structure beneath the African Plate. In these specific examples, the dynamic mini-batch approach requires around 20 per cent of the computational resources in order to achieve data and model misfits that are comparable to those achieved by a standard full-waveform inversion where all sources are used in each iteration.</abstract><cop>OXFORD</cop><pub>Oxford University Press</pub><doi>10.1093/gji/ggaa079</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0931-6776</orcidid><orcidid>https://orcid.org/0000-0001-5867-6634</orcidid><orcidid>https://orcid.org/0000-0002-5868-9491</orcidid><orcidid>https://orcid.org/0000-0002-5050-7454</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-540X |
ispartof | Geophysical journal international, 2020-05, Vol.221 (2), p.1427-1438 |
issn | 0956-540X 1365-246X |
language | eng |
recordid | cdi_webofscience_primary_000525949600045CitationCount |
source | Access via Oxford University Press (Open Access Collection); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Geochemistry & Geophysics Physical Sciences Science & Technology |
title | Accelerated full-waveform inversion using dynamic mini-batches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20full-waveform%20inversion%20using%20dynamic%20mini-batches&rft.jtitle=Geophysical%20journal%20international&rft.au=van%C2%A0Herwaarden,%20Dirk%20Philip&rft.date=2020-05-01&rft.volume=221&rft.issue=2&rft.spage=1427&rft.epage=1438&rft.pages=1427-1438&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggaa079&rft_dat=%3Coup_webof%3E10.1093/gji/ggaa079%3C/oup_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggaa079&rfr_iscdi=true |