Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization
Differential Evolution (DE) is a simple and effective stochastic algorithm for optimization problems, and it became much more popular in recent year because of its easy-implementation and excellent performance. Nevertheless, the performance of DE algorithm is greatly affected by the trial vector gen...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.40809-40827 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40827 |
---|---|
container_issue | |
container_start_page | 40809 |
container_title | IEEE access |
container_volume | 8 |
creator | Meng, Zhenyu Yang, Cheng Li, Xiaoqing Chen, Yuxin |
description | Differential Evolution (DE) is a simple and effective stochastic algorithm for optimization problems, and it became much more popular in recent year because of its easy-implementation and excellent performance. Nevertheless, the performance of DE algorithm is greatly affected by the trial vector generation strategy including mutation strategy and parameter control, both of which still exist some weaknesses, e.g. the premature convergence to some local optima of a mutation strategy and the misleading interaction among control parameters. Therefore in this paper, a novel Di-DE algorithm is proposed to tackle these weaknesses. A depth information based external archive was advanced in our novel mutation strategy, which can get a better perception of the landscape of objective in an optimization. Moreover, a novel grouping strategy was also employed in Di-DE and parameters were updated separately so as to avoid the misleading among parameters. Moreover, a cooperative strategy for information interchange was also advanced aiming at improving the efficiency of the exploration behavior. By absorbing these advancements, the novel Di-DE algorithm can secure better performance in comparison with other famous optimization algorithms. The algorithm validation was conducted on CEC2013 and CEC2017 test suites, and the results revealed the competitiveness of our Di-DE algorithm in comparison with those famous optimization algorithms including Particle Swarm Optimization (PSO) variants, QUasi-Affine TRansformation Evolution (QUATRE) variants and Differential Evolution (DE) variants. |
doi_str_mv | 10.1109/ACCESS.2020.2976845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000525348400010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9015955</ieee_id><doaj_id>oai_doaj_org_article_ab6eb2b260484a76930aa78cd4910a59</doaj_id><sourcerecordid>2454747016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c1306e994fd0615f969b937ee5dda2007ef173b5f77716d7236d8e11c04e2e4d3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEElXpJ-glEkeUxf8dc1uyC6xUUaSCOFpOPAavkjg4ThF8erybqnDEF4_G7_dm5FcU1xhtMEbq9bZp9nd3G4II2hAlRc34k-KCYKEqyql4-k_9vLia5yPKp84tLi-Kaeer3f5NuYMpfS8PowtxMMmHsXprZrDlzjsHEcbkTV_u70O_nB7Lrz6rt9ZMyd9D-clEM0CCWDZhTDH0ZbYpPy4DRN9l7jbLBv_77PuieOZMP8PVw31ZfHm3_9x8qG5u3x-a7U3VMVSnqsMUCVCKOYsE5k4J1SoqAbi1hiAkwWFJW-6klFhYSaiwNWDcIQYEmKWXxWH1tcEc9RT9YOIvHYzX50aI37SJyXc9aNMKaElLBGI1M1IoioyRdWeZwshwlb1erl5TDD8WmJM-hiWOeX1NGGeSSYRFVtFV1cUwzxHc41SM9CkpvSalT0nph6Qy9WqlfkIb3Nx5GDt4JHNSnHCa98oVRlld_7-68en85U1YxpTR6xX1AH8RhTBXnNM_DdCvhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454747016</pqid></control><display><type>article</type><title>Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Meng, Zhenyu ; Yang, Cheng ; Li, Xiaoqing ; Chen, Yuxin</creator><creatorcontrib>Meng, Zhenyu ; Yang, Cheng ; Li, Xiaoqing ; Chen, Yuxin</creatorcontrib><description>Differential Evolution (DE) is a simple and effective stochastic algorithm for optimization problems, and it became much more popular in recent year because of its easy-implementation and excellent performance. Nevertheless, the performance of DE algorithm is greatly affected by the trial vector generation strategy including mutation strategy and parameter control, both of which still exist some weaknesses, e.g. the premature convergence to some local optima of a mutation strategy and the misleading interaction among control parameters. Therefore in this paper, a novel Di-DE algorithm is proposed to tackle these weaknesses. A depth information based external archive was advanced in our novel mutation strategy, which can get a better perception of the landscape of objective in an optimization. Moreover, a novel grouping strategy was also employed in Di-DE and parameters were updated separately so as to avoid the misleading among parameters. Moreover, a cooperative strategy for information interchange was also advanced aiming at improving the efficiency of the exploration behavior. By absorbing these advancements, the novel Di-DE algorithm can secure better performance in comparison with other famous optimization algorithms. The algorithm validation was conducted on CEC2013 and CEC2017 test suites, and the results revealed the competitiveness of our Di-DE algorithm in comparison with those famous optimization algorithms including Particle Swarm Optimization (PSO) variants, QUasi-Affine TRansformation Evolution (QUATRE) variants and Differential Evolution (DE) variants.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2976845</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Adaptive control ; Affine transformations ; Algorithms ; Birds ; Computer Science ; Computer Science, Information Systems ; Convergence ; Depth information ; differential evolution ; Engineering ; Engineering, Electrical & Electronic ; Evolutionary computation ; Heuristic algorithms ; Interaction parameters ; Mutation ; numerical optimization ; Optimization ; Optimization algorithms ; parameter control ; Particle swarm optimization ; Quasiaffine transformations ; Science & Technology ; Sociology ; Statistics ; stochastic optimization ; Strategy ; Technology ; Telecommunications</subject><ispartof>IEEE access, 2020, Vol.8, p.40809-40827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>25</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000525348400010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-c1306e994fd0615f969b937ee5dda2007ef173b5f77716d7236d8e11c04e2e4d3</citedby><cites>FETCH-LOGICAL-c408t-c1306e994fd0615f969b937ee5dda2007ef173b5f77716d7236d8e11c04e2e4d3</cites><orcidid>0000-0002-1466-8082 ; 0000-0001-6265-5529 ; 0000-0001-9680-0333 ; 0000-0001-9458-1288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9015955$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27638,27928,27929,27930,28253,54938</link.rule.ids></links><search><creatorcontrib>Meng, Zhenyu</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Li, Xiaoqing</creatorcontrib><creatorcontrib>Chen, Yuxin</creatorcontrib><title>Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>Differential Evolution (DE) is a simple and effective stochastic algorithm for optimization problems, and it became much more popular in recent year because of its easy-implementation and excellent performance. Nevertheless, the performance of DE algorithm is greatly affected by the trial vector generation strategy including mutation strategy and parameter control, both of which still exist some weaknesses, e.g. the premature convergence to some local optima of a mutation strategy and the misleading interaction among control parameters. Therefore in this paper, a novel Di-DE algorithm is proposed to tackle these weaknesses. A depth information based external archive was advanced in our novel mutation strategy, which can get a better perception of the landscape of objective in an optimization. Moreover, a novel grouping strategy was also employed in Di-DE and parameters were updated separately so as to avoid the misleading among parameters. Moreover, a cooperative strategy for information interchange was also advanced aiming at improving the efficiency of the exploration behavior. By absorbing these advancements, the novel Di-DE algorithm can secure better performance in comparison with other famous optimization algorithms. The algorithm validation was conducted on CEC2013 and CEC2017 test suites, and the results revealed the competitiveness of our Di-DE algorithm in comparison with those famous optimization algorithms including Particle Swarm Optimization (PSO) variants, QUasi-Affine TRansformation Evolution (QUATRE) variants and Differential Evolution (DE) variants.</description><subject>Adaptive control</subject><subject>Affine transformations</subject><subject>Algorithms</subject><subject>Birds</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Convergence</subject><subject>Depth information</subject><subject>differential evolution</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Evolutionary computation</subject><subject>Heuristic algorithms</subject><subject>Interaction parameters</subject><subject>Mutation</subject><subject>numerical optimization</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>parameter control</subject><subject>Particle swarm optimization</subject><subject>Quasiaffine transformations</subject><subject>Science & Technology</subject><subject>Sociology</subject><subject>Statistics</subject><subject>stochastic optimization</subject><subject>Strategy</subject><subject>Technology</subject><subject>Telecommunications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9v1DAQxSMEElXpJ-glEkeUxf8dc1uyC6xUUaSCOFpOPAavkjg4ThF8erybqnDEF4_G7_dm5FcU1xhtMEbq9bZp9nd3G4II2hAlRc34k-KCYKEqyql4-k_9vLia5yPKp84tLi-Kaeer3f5NuYMpfS8PowtxMMmHsXprZrDlzjsHEcbkTV_u70O_nB7Lrz6rt9ZMyd9D-clEM0CCWDZhTDH0ZbYpPy4DRN9l7jbLBv_77PuieOZMP8PVw31ZfHm3_9x8qG5u3x-a7U3VMVSnqsMUCVCKOYsE5k4J1SoqAbi1hiAkwWFJW-6klFhYSaiwNWDcIQYEmKWXxWH1tcEc9RT9YOIvHYzX50aI37SJyXc9aNMKaElLBGI1M1IoioyRdWeZwshwlb1erl5TDD8WmJM-hiWOeX1NGGeSSYRFVtFV1cUwzxHc41SM9CkpvSalT0nph6Qy9WqlfkIb3Nx5GDt4JHNSnHCa98oVRlld_7-68en85U1YxpTR6xX1AH8RhTBXnNM_DdCvhA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Meng, Zhenyu</creator><creator>Yang, Cheng</creator><creator>Li, Xiaoqing</creator><creator>Chen, Yuxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1466-8082</orcidid><orcidid>https://orcid.org/0000-0001-6265-5529</orcidid><orcidid>https://orcid.org/0000-0001-9680-0333</orcidid><orcidid>https://orcid.org/0000-0001-9458-1288</orcidid></search><sort><creationdate>2020</creationdate><title>Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization</title><author>Meng, Zhenyu ; Yang, Cheng ; Li, Xiaoqing ; Chen, Yuxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c1306e994fd0615f969b937ee5dda2007ef173b5f77716d7236d8e11c04e2e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Affine transformations</topic><topic>Algorithms</topic><topic>Birds</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Convergence</topic><topic>Depth information</topic><topic>differential evolution</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Evolutionary computation</topic><topic>Heuristic algorithms</topic><topic>Interaction parameters</topic><topic>Mutation</topic><topic>numerical optimization</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>parameter control</topic><topic>Particle swarm optimization</topic><topic>Quasiaffine transformations</topic><topic>Science & Technology</topic><topic>Sociology</topic><topic>Statistics</topic><topic>stochastic optimization</topic><topic>Strategy</topic><topic>Technology</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Zhenyu</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Li, Xiaoqing</creatorcontrib><creatorcontrib>Chen, Yuxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Zhenyu</au><au>Yang, Cheng</au><au>Li, Xiaoqing</au><au>Chen, Yuxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>40809</spage><epage>40827</epage><pages>40809-40827</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Differential Evolution (DE) is a simple and effective stochastic algorithm for optimization problems, and it became much more popular in recent year because of its easy-implementation and excellent performance. Nevertheless, the performance of DE algorithm is greatly affected by the trial vector generation strategy including mutation strategy and parameter control, both of which still exist some weaknesses, e.g. the premature convergence to some local optima of a mutation strategy and the misleading interaction among control parameters. Therefore in this paper, a novel Di-DE algorithm is proposed to tackle these weaknesses. A depth information based external archive was advanced in our novel mutation strategy, which can get a better perception of the landscape of objective in an optimization. Moreover, a novel grouping strategy was also employed in Di-DE and parameters were updated separately so as to avoid the misleading among parameters. Moreover, a cooperative strategy for information interchange was also advanced aiming at improving the efficiency of the exploration behavior. By absorbing these advancements, the novel Di-DE algorithm can secure better performance in comparison with other famous optimization algorithms. The algorithm validation was conducted on CEC2013 and CEC2017 test suites, and the results revealed the competitiveness of our Di-DE algorithm in comparison with those famous optimization algorithms including Particle Swarm Optimization (PSO) variants, QUasi-Affine TRansformation Evolution (QUATRE) variants and Differential Evolution (DE) variants.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2976845</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1466-8082</orcidid><orcidid>https://orcid.org/0000-0001-6265-5529</orcidid><orcidid>https://orcid.org/0000-0001-9680-0333</orcidid><orcidid>https://orcid.org/0000-0001-9458-1288</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.40809-40827 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_webofscience_primary_000525348400010 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Adaptive control Affine transformations Algorithms Birds Computer Science Computer Science, Information Systems Convergence Depth information differential evolution Engineering Engineering, Electrical & Electronic Evolutionary computation Heuristic algorithms Interaction parameters Mutation numerical optimization Optimization Optimization algorithms parameter control Particle swarm optimization Quasiaffine transformations Science & Technology Sociology Statistics stochastic optimization Strategy Technology Telecommunications |
title | Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Di-DE:%20Depth%20Information-Based%20Differential%20Evolution%20With%20Adaptive%20Parameter%20Control%20for%20Numerical%20Optimization&rft.jtitle=IEEE%20access&rft.au=Meng,%20Zhenyu&rft.date=2020&rft.volume=8&rft.spage=40809&rft.epage=40827&rft.pages=40809-40827&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2976845&rft_dat=%3Cproquest_webof%3E2454747016%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454747016&rft_id=info:pmid/&rft_ieee_id=9015955&rft_doaj_id=oai_doaj_org_article_ab6eb2b260484a76930aa78cd4910a59&rfr_iscdi=true |