Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization

Differential Evolution (DE) is a simple and effective stochastic algorithm for optimization problems, and it became much more popular in recent year because of its easy-implementation and excellent performance. Nevertheless, the performance of DE algorithm is greatly affected by the trial vector gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.40809-40827
Hauptverfasser: Meng, Zhenyu, Yang, Cheng, Li, Xiaoqing, Chen, Yuxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40827
container_issue
container_start_page 40809
container_title IEEE access
container_volume 8
creator Meng, Zhenyu
Yang, Cheng
Li, Xiaoqing
Chen, Yuxin
description Differential Evolution (DE) is a simple and effective stochastic algorithm for optimization problems, and it became much more popular in recent year because of its easy-implementation and excellent performance. Nevertheless, the performance of DE algorithm is greatly affected by the trial vector generation strategy including mutation strategy and parameter control, both of which still exist some weaknesses, e.g. the premature convergence to some local optima of a mutation strategy and the misleading interaction among control parameters. Therefore in this paper, a novel Di-DE algorithm is proposed to tackle these weaknesses. A depth information based external archive was advanced in our novel mutation strategy, which can get a better perception of the landscape of objective in an optimization. Moreover, a novel grouping strategy was also employed in Di-DE and parameters were updated separately so as to avoid the misleading among parameters. Moreover, a cooperative strategy for information interchange was also advanced aiming at improving the efficiency of the exploration behavior. By absorbing these advancements, the novel Di-DE algorithm can secure better performance in comparison with other famous optimization algorithms. The algorithm validation was conducted on CEC2013 and CEC2017 test suites, and the results revealed the competitiveness of our Di-DE algorithm in comparison with those famous optimization algorithms including Particle Swarm Optimization (PSO) variants, QUasi-Affine TRansformation Evolution (QUATRE) variants and Differential Evolution (DE) variants.
doi_str_mv 10.1109/ACCESS.2020.2976845
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000525348400010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9015955</ieee_id><doaj_id>oai_doaj_org_article_ab6eb2b260484a76930aa78cd4910a59</doaj_id><sourcerecordid>2454747016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c1306e994fd0615f969b937ee5dda2007ef173b5f77716d7236d8e11c04e2e4d3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEElXpJ-glEkeUxf8dc1uyC6xUUaSCOFpOPAavkjg4ThF8erybqnDEF4_G7_dm5FcU1xhtMEbq9bZp9nd3G4II2hAlRc34k-KCYKEqyql4-k_9vLia5yPKp84tLi-Kaeer3f5NuYMpfS8PowtxMMmHsXprZrDlzjsHEcbkTV_u70O_nB7Lrz6rt9ZMyd9D-clEM0CCWDZhTDH0ZbYpPy4DRN9l7jbLBv_77PuieOZMP8PVw31ZfHm3_9x8qG5u3x-a7U3VMVSnqsMUCVCKOYsE5k4J1SoqAbi1hiAkwWFJW-6klFhYSaiwNWDcIQYEmKWXxWH1tcEc9RT9YOIvHYzX50aI37SJyXc9aNMKaElLBGI1M1IoioyRdWeZwshwlb1erl5TDD8WmJM-hiWOeX1NGGeSSYRFVtFV1cUwzxHc41SM9CkpvSalT0nph6Qy9WqlfkIb3Nx5GDt4JHNSnHCa98oVRlld_7-68en85U1YxpTR6xX1AH8RhTBXnNM_DdCvhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454747016</pqid></control><display><type>article</type><title>Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Meng, Zhenyu ; Yang, Cheng ; Li, Xiaoqing ; Chen, Yuxin</creator><creatorcontrib>Meng, Zhenyu ; Yang, Cheng ; Li, Xiaoqing ; Chen, Yuxin</creatorcontrib><description>Differential Evolution (DE) is a simple and effective stochastic algorithm for optimization problems, and it became much more popular in recent year because of its easy-implementation and excellent performance. Nevertheless, the performance of DE algorithm is greatly affected by the trial vector generation strategy including mutation strategy and parameter control, both of which still exist some weaknesses, e.g. the premature convergence to some local optima of a mutation strategy and the misleading interaction among control parameters. Therefore in this paper, a novel Di-DE algorithm is proposed to tackle these weaknesses. A depth information based external archive was advanced in our novel mutation strategy, which can get a better perception of the landscape of objective in an optimization. Moreover, a novel grouping strategy was also employed in Di-DE and parameters were updated separately so as to avoid the misleading among parameters. Moreover, a cooperative strategy for information interchange was also advanced aiming at improving the efficiency of the exploration behavior. By absorbing these advancements, the novel Di-DE algorithm can secure better performance in comparison with other famous optimization algorithms. The algorithm validation was conducted on CEC2013 and CEC2017 test suites, and the results revealed the competitiveness of our Di-DE algorithm in comparison with those famous optimization algorithms including Particle Swarm Optimization (PSO) variants, QUasi-Affine TRansformation Evolution (QUATRE) variants and Differential Evolution (DE) variants.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2976845</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Adaptive control ; Affine transformations ; Algorithms ; Birds ; Computer Science ; Computer Science, Information Systems ; Convergence ; Depth information ; differential evolution ; Engineering ; Engineering, Electrical &amp; Electronic ; Evolutionary computation ; Heuristic algorithms ; Interaction parameters ; Mutation ; numerical optimization ; Optimization ; Optimization algorithms ; parameter control ; Particle swarm optimization ; Quasiaffine transformations ; Science &amp; Technology ; Sociology ; Statistics ; stochastic optimization ; Strategy ; Technology ; Telecommunications</subject><ispartof>IEEE access, 2020, Vol.8, p.40809-40827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>25</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000525348400010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-c1306e994fd0615f969b937ee5dda2007ef173b5f77716d7236d8e11c04e2e4d3</citedby><cites>FETCH-LOGICAL-c408t-c1306e994fd0615f969b937ee5dda2007ef173b5f77716d7236d8e11c04e2e4d3</cites><orcidid>0000-0002-1466-8082 ; 0000-0001-6265-5529 ; 0000-0001-9680-0333 ; 0000-0001-9458-1288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9015955$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27638,27928,27929,27930,28253,54938</link.rule.ids></links><search><creatorcontrib>Meng, Zhenyu</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Li, Xiaoqing</creatorcontrib><creatorcontrib>Chen, Yuxin</creatorcontrib><title>Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>Differential Evolution (DE) is a simple and effective stochastic algorithm for optimization problems, and it became much more popular in recent year because of its easy-implementation and excellent performance. Nevertheless, the performance of DE algorithm is greatly affected by the trial vector generation strategy including mutation strategy and parameter control, both of which still exist some weaknesses, e.g. the premature convergence to some local optima of a mutation strategy and the misleading interaction among control parameters. Therefore in this paper, a novel Di-DE algorithm is proposed to tackle these weaknesses. A depth information based external archive was advanced in our novel mutation strategy, which can get a better perception of the landscape of objective in an optimization. Moreover, a novel grouping strategy was also employed in Di-DE and parameters were updated separately so as to avoid the misleading among parameters. Moreover, a cooperative strategy for information interchange was also advanced aiming at improving the efficiency of the exploration behavior. By absorbing these advancements, the novel Di-DE algorithm can secure better performance in comparison with other famous optimization algorithms. The algorithm validation was conducted on CEC2013 and CEC2017 test suites, and the results revealed the competitiveness of our Di-DE algorithm in comparison with those famous optimization algorithms including Particle Swarm Optimization (PSO) variants, QUasi-Affine TRansformation Evolution (QUATRE) variants and Differential Evolution (DE) variants.</description><subject>Adaptive control</subject><subject>Affine transformations</subject><subject>Algorithms</subject><subject>Birds</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Convergence</subject><subject>Depth information</subject><subject>differential evolution</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Evolutionary computation</subject><subject>Heuristic algorithms</subject><subject>Interaction parameters</subject><subject>Mutation</subject><subject>numerical optimization</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>parameter control</subject><subject>Particle swarm optimization</subject><subject>Quasiaffine transformations</subject><subject>Science &amp; Technology</subject><subject>Sociology</subject><subject>Statistics</subject><subject>stochastic optimization</subject><subject>Strategy</subject><subject>Technology</subject><subject>Telecommunications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9v1DAQxSMEElXpJ-glEkeUxf8dc1uyC6xUUaSCOFpOPAavkjg4ThF8erybqnDEF4_G7_dm5FcU1xhtMEbq9bZp9nd3G4II2hAlRc34k-KCYKEqyql4-k_9vLia5yPKp84tLi-Kaeer3f5NuYMpfS8PowtxMMmHsXprZrDlzjsHEcbkTV_u70O_nB7Lrz6rt9ZMyd9D-clEM0CCWDZhTDH0ZbYpPy4DRN9l7jbLBv_77PuieOZMP8PVw31ZfHm3_9x8qG5u3x-a7U3VMVSnqsMUCVCKOYsE5k4J1SoqAbi1hiAkwWFJW-6klFhYSaiwNWDcIQYEmKWXxWH1tcEc9RT9YOIvHYzX50aI37SJyXc9aNMKaElLBGI1M1IoioyRdWeZwshwlb1erl5TDD8WmJM-hiWOeX1NGGeSSYRFVtFV1cUwzxHc41SM9CkpvSalT0nph6Qy9WqlfkIb3Nx5GDt4JHNSnHCa98oVRlld_7-68en85U1YxpTR6xX1AH8RhTBXnNM_DdCvhA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Meng, Zhenyu</creator><creator>Yang, Cheng</creator><creator>Li, Xiaoqing</creator><creator>Chen, Yuxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1466-8082</orcidid><orcidid>https://orcid.org/0000-0001-6265-5529</orcidid><orcidid>https://orcid.org/0000-0001-9680-0333</orcidid><orcidid>https://orcid.org/0000-0001-9458-1288</orcidid></search><sort><creationdate>2020</creationdate><title>Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization</title><author>Meng, Zhenyu ; Yang, Cheng ; Li, Xiaoqing ; Chen, Yuxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c1306e994fd0615f969b937ee5dda2007ef173b5f77716d7236d8e11c04e2e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Affine transformations</topic><topic>Algorithms</topic><topic>Birds</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Convergence</topic><topic>Depth information</topic><topic>differential evolution</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Evolutionary computation</topic><topic>Heuristic algorithms</topic><topic>Interaction parameters</topic><topic>Mutation</topic><topic>numerical optimization</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>parameter control</topic><topic>Particle swarm optimization</topic><topic>Quasiaffine transformations</topic><topic>Science &amp; Technology</topic><topic>Sociology</topic><topic>Statistics</topic><topic>stochastic optimization</topic><topic>Strategy</topic><topic>Technology</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Zhenyu</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Li, Xiaoqing</creatorcontrib><creatorcontrib>Chen, Yuxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Zhenyu</au><au>Yang, Cheng</au><au>Li, Xiaoqing</au><au>Chen, Yuxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>40809</spage><epage>40827</epage><pages>40809-40827</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Differential Evolution (DE) is a simple and effective stochastic algorithm for optimization problems, and it became much more popular in recent year because of its easy-implementation and excellent performance. Nevertheless, the performance of DE algorithm is greatly affected by the trial vector generation strategy including mutation strategy and parameter control, both of which still exist some weaknesses, e.g. the premature convergence to some local optima of a mutation strategy and the misleading interaction among control parameters. Therefore in this paper, a novel Di-DE algorithm is proposed to tackle these weaknesses. A depth information based external archive was advanced in our novel mutation strategy, which can get a better perception of the landscape of objective in an optimization. Moreover, a novel grouping strategy was also employed in Di-DE and parameters were updated separately so as to avoid the misleading among parameters. Moreover, a cooperative strategy for information interchange was also advanced aiming at improving the efficiency of the exploration behavior. By absorbing these advancements, the novel Di-DE algorithm can secure better performance in comparison with other famous optimization algorithms. The algorithm validation was conducted on CEC2013 and CEC2017 test suites, and the results revealed the competitiveness of our Di-DE algorithm in comparison with those famous optimization algorithms including Particle Swarm Optimization (PSO) variants, QUasi-Affine TRansformation Evolution (QUATRE) variants and Differential Evolution (DE) variants.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2976845</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1466-8082</orcidid><orcidid>https://orcid.org/0000-0001-6265-5529</orcidid><orcidid>https://orcid.org/0000-0001-9680-0333</orcidid><orcidid>https://orcid.org/0000-0001-9458-1288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.40809-40827
issn 2169-3536
2169-3536
language eng
recordid cdi_webofscience_primary_000525348400010
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Adaptive control
Affine transformations
Algorithms
Birds
Computer Science
Computer Science, Information Systems
Convergence
Depth information
differential evolution
Engineering
Engineering, Electrical & Electronic
Evolutionary computation
Heuristic algorithms
Interaction parameters
Mutation
numerical optimization
Optimization
Optimization algorithms
parameter control
Particle swarm optimization
Quasiaffine transformations
Science & Technology
Sociology
Statistics
stochastic optimization
Strategy
Technology
Telecommunications
title Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Di-DE:%20Depth%20Information-Based%20Differential%20Evolution%20With%20Adaptive%20Parameter%20Control%20for%20Numerical%20Optimization&rft.jtitle=IEEE%20access&rft.au=Meng,%20Zhenyu&rft.date=2020&rft.volume=8&rft.spage=40809&rft.epage=40827&rft.pages=40809-40827&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2976845&rft_dat=%3Cproquest_webof%3E2454747016%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454747016&rft_id=info:pmid/&rft_ieee_id=9015955&rft_doaj_id=oai_doaj_org_article_ab6eb2b260484a76930aa78cd4910a59&rfr_iscdi=true