A Self-Stabilizing Phase Decoder for Quantum Key Distribution

Self-stabilization quantum key distribution (QKD) systems are often based on the Faraday magneto-optic effect such as “plug and play” QKD systems and Faraday–Michelson QKD systems. In this article, we propose a new anti-quantum-channel disturbance decoder for QKD without magneto-optic devices, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-03, Vol.10 (5), p.1661
Hauptverfasser: Xu, Huaxing, Wang, Shaohua, Huang, Yang, Song, Yaqi, Wang, Changlei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-stabilization quantum key distribution (QKD) systems are often based on the Faraday magneto-optic effect such as “plug and play” QKD systems and Faraday–Michelson QKD systems. In this article, we propose a new anti-quantum-channel disturbance decoder for QKD without magneto-optic devices, which can be a benefit for the photonic integration and applications in magnetic environments. The decoder is based on a quarter-wave plate reflector–Michelson (Q–M) interferometer, with which the QKD system can be free of polarization disturbance caused by quantum channel and optical devices in the system. The theoretical analysis indicates that the Q–M interferometer is immune to polarization-induced signal fading, where the operator of the Q–M interferometer corresponding to Pauli Matrix σ2 makes it satisfy the anti-disturbance condition naturally. A Q–M interferometer based time-bin phase encoding QKD setup is demonstrated, and the experimental results show that the QKD setup works stably with a low quantum bit error rate about 1.3% for 10 h over 60.6 km standard telecommunication optical fiber.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10051661