Optimal Maintenance Decision Based on Remaining Useful Lifetime Prediction for the Equipment Subject to Imperfect Maintenance

Focusing on the fact that the existing research on optimal maintenance decision for remaining useful lifetime (RUL) prediction and imperfect maintenance has low accuracy of RUL prediction and rationality of decision results, an optimal maintenance decision method based on RUL prediction for the equi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.6704-6716
Hauptverfasser: Chen, Yunxiang, Wang, Zezhou, Cai, Zhongyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6716
container_issue
container_start_page 6704
container_title IEEE access
container_volume 8
creator Chen, Yunxiang
Wang, Zezhou
Cai, Zhongyi
description Focusing on the fact that the existing research on optimal maintenance decision for remaining useful lifetime (RUL) prediction and imperfect maintenance has low accuracy of RUL prediction and rationality of decision results, an optimal maintenance decision method based on RUL prediction for the equipment subject to imperfect maintenance is proposed in this paper. Firstly, the nonlinear Wiener process is used to characterize the degradation law of the equipment. Secondly, the imperfect maintenance model that meets the upper limit of the maintenance number is established based on the nonhomogeneous Poisson process. Then, based on the concept of the first hitting time, the probability density function (PDF) of the RUL is derived. Finally, based on the RUL prediction results, the optimal maintenance decision model for the equipment subject imperfect maintenance is constructed. Through the example verification and cost parameter sensitivity analysis, the proposed method can effectively improve the accuracy of the RUL prediction and the scientific of maintenance decision results, which has engineering application value.
doi_str_mv 10.1109/ACCESS.2019.2963765
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000524687200006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8949355</ieee_id><doaj_id>oai_doaj_org_article_dc0b8ec664eb4720ba920155647acbda</doaj_id><sourcerecordid>2454956771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-13608a9366d15bf993221697b2f0a522dd02d49bc19471c0c24f653ecf3dd2793</originalsourceid><addsrcrecordid>eNqNUU1v1DAQjRBIVKW_oBdLHNFu_Z34WMICKy0qYunZcuxx8Wo3Th1HFQf-ex1SlR6Zi2fG783Xq6pLgteEYHV13bab_X5NMVFrqiSrpXhVnVEi1YoJJl-_8N9WF-N4wMWakhL1WfXnZsjhZI7omwl9ht70FtAnsGEMsUcfzQgOFecHnMp_6O_Q7Qh-OqJd8FCIgL4ncMHmGe1jQvkXoM39FIYT9Bntp-4ANqMc0fY0QPJz8KLTu-qNN8cRLp7e8-r28-Zn-3W1u_myba93K8txk1eESdwYxaR0RHReKUbnleqOemwEpc5h6rjqLFG8JhZbyr0UDKxnztFasfNqu9R10Rz0kMrG6beOJui_iZjutEk52CNoZ3HXgJWSQ8drijujymWFkLw2tnOm1Hq_1BpSvJ9gzPoQp9SX8TXlgish65oUFFtQNsVxTOCfuxKsZ9n0IpueZdNPshXWh4X1AF30ow1QjvTMLLIJymVTpiomC7r5f3QbsplVauPU50K9XKgB4B-lUVwxIdgjJ8u0yA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454956771</pqid></control><display><type>article</type><title>Optimal Maintenance Decision Based on Remaining Useful Lifetime Prediction for the Equipment Subject to Imperfect Maintenance</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Chen, Yunxiang ; Wang, Zezhou ; Cai, Zhongyi</creator><creatorcontrib>Chen, Yunxiang ; Wang, Zezhou ; Cai, Zhongyi</creatorcontrib><description>Focusing on the fact that the existing research on optimal maintenance decision for remaining useful lifetime (RUL) prediction and imperfect maintenance has low accuracy of RUL prediction and rationality of decision results, an optimal maintenance decision method based on RUL prediction for the equipment subject to imperfect maintenance is proposed in this paper. Firstly, the nonlinear Wiener process is used to characterize the degradation law of the equipment. Secondly, the imperfect maintenance model that meets the upper limit of the maintenance number is established based on the nonhomogeneous Poisson process. Then, based on the concept of the first hitting time, the probability density function (PDF) of the RUL is derived. Finally, based on the RUL prediction results, the optimal maintenance decision model for the equipment subject imperfect maintenance is constructed. Through the example verification and cost parameter sensitivity analysis, the proposed method can effectively improve the accuracy of the RUL prediction and the scientific of maintenance decision results, which has engineering application value.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2963765</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Computer Science ; Computer Science, Information Systems ; Cost analysis ; Degradation ; Economics ; Engineering ; Engineering, Electrical &amp; Electronic ; imperfect maintenance ; Maintenance ; Maintenance decision ; Maintenance engineering ; Mathematical model ; nonhomogeneous Poisson process ; nonlinear Wiener process ; Parameter sensitivity ; Predictive models ; Probability density function ; Probability density functions ; Production ; remaining useful lifetime prediction ; Science &amp; Technology ; Sensitivity analysis ; Statistical analysis ; Technology ; Telecommunications</subject><ispartof>IEEE access, 2020, Vol.8, p.6704-6716</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000524687200006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-13608a9366d15bf993221697b2f0a522dd02d49bc19471c0c24f653ecf3dd2793</citedby><cites>FETCH-LOGICAL-c408t-13608a9366d15bf993221697b2f0a522dd02d49bc19471c0c24f653ecf3dd2793</cites><orcidid>0000-0003-4148-0496 ; 0000-0002-4722-5405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8949355$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27638,27928,27929,27930,28253,54938</link.rule.ids></links><search><creatorcontrib>Chen, Yunxiang</creatorcontrib><creatorcontrib>Wang, Zezhou</creatorcontrib><creatorcontrib>Cai, Zhongyi</creatorcontrib><title>Optimal Maintenance Decision Based on Remaining Useful Lifetime Prediction for the Equipment Subject to Imperfect Maintenance</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>Focusing on the fact that the existing research on optimal maintenance decision for remaining useful lifetime (RUL) prediction and imperfect maintenance has low accuracy of RUL prediction and rationality of decision results, an optimal maintenance decision method based on RUL prediction for the equipment subject to imperfect maintenance is proposed in this paper. Firstly, the nonlinear Wiener process is used to characterize the degradation law of the equipment. Secondly, the imperfect maintenance model that meets the upper limit of the maintenance number is established based on the nonhomogeneous Poisson process. Then, based on the concept of the first hitting time, the probability density function (PDF) of the RUL is derived. Finally, based on the RUL prediction results, the optimal maintenance decision model for the equipment subject imperfect maintenance is constructed. Through the example verification and cost parameter sensitivity analysis, the proposed method can effectively improve the accuracy of the RUL prediction and the scientific of maintenance decision results, which has engineering application value.</description><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Cost analysis</subject><subject>Degradation</subject><subject>Economics</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>imperfect maintenance</subject><subject>Maintenance</subject><subject>Maintenance decision</subject><subject>Maintenance engineering</subject><subject>Mathematical model</subject><subject>nonhomogeneous Poisson process</subject><subject>nonlinear Wiener process</subject><subject>Parameter sensitivity</subject><subject>Predictive models</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Production</subject><subject>remaining useful lifetime prediction</subject><subject>Science &amp; Technology</subject><subject>Sensitivity analysis</subject><subject>Statistical analysis</subject><subject>Technology</subject><subject>Telecommunications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUU1v1DAQjRBIVKW_oBdLHNFu_Z34WMICKy0qYunZcuxx8Wo3Th1HFQf-ex1SlR6Zi2fG783Xq6pLgteEYHV13bab_X5NMVFrqiSrpXhVnVEi1YoJJl-_8N9WF-N4wMWakhL1WfXnZsjhZI7omwl9ht70FtAnsGEMsUcfzQgOFecHnMp_6O_Q7Qh-OqJd8FCIgL4ncMHmGe1jQvkXoM39FIYT9Bntp-4ANqMc0fY0QPJz8KLTu-qNN8cRLp7e8-r28-Zn-3W1u_myba93K8txk1eESdwYxaR0RHReKUbnleqOemwEpc5h6rjqLFG8JhZbyr0UDKxnztFasfNqu9R10Rz0kMrG6beOJui_iZjutEk52CNoZ3HXgJWSQ8drijujymWFkLw2tnOm1Hq_1BpSvJ9gzPoQp9SX8TXlgish65oUFFtQNsVxTOCfuxKsZ9n0IpueZdNPshXWh4X1AF30ow1QjvTMLLIJymVTpiomC7r5f3QbsplVauPU50K9XKgB4B-lUVwxIdgjJ8u0yA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chen, Yunxiang</creator><creator>Wang, Zezhou</creator><creator>Cai, Zhongyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4148-0496</orcidid><orcidid>https://orcid.org/0000-0002-4722-5405</orcidid></search><sort><creationdate>2020</creationdate><title>Optimal Maintenance Decision Based on Remaining Useful Lifetime Prediction for the Equipment Subject to Imperfect Maintenance</title><author>Chen, Yunxiang ; Wang, Zezhou ; Cai, Zhongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-13608a9366d15bf993221697b2f0a522dd02d49bc19471c0c24f653ecf3dd2793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Cost analysis</topic><topic>Degradation</topic><topic>Economics</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>imperfect maintenance</topic><topic>Maintenance</topic><topic>Maintenance decision</topic><topic>Maintenance engineering</topic><topic>Mathematical model</topic><topic>nonhomogeneous Poisson process</topic><topic>nonlinear Wiener process</topic><topic>Parameter sensitivity</topic><topic>Predictive models</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Production</topic><topic>remaining useful lifetime prediction</topic><topic>Science &amp; Technology</topic><topic>Sensitivity analysis</topic><topic>Statistical analysis</topic><topic>Technology</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yunxiang</creatorcontrib><creatorcontrib>Wang, Zezhou</creatorcontrib><creatorcontrib>Cai, Zhongyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yunxiang</au><au>Wang, Zezhou</au><au>Cai, Zhongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Maintenance Decision Based on Remaining Useful Lifetime Prediction for the Equipment Subject to Imperfect Maintenance</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>6704</spage><epage>6716</epage><pages>6704-6716</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Focusing on the fact that the existing research on optimal maintenance decision for remaining useful lifetime (RUL) prediction and imperfect maintenance has low accuracy of RUL prediction and rationality of decision results, an optimal maintenance decision method based on RUL prediction for the equipment subject to imperfect maintenance is proposed in this paper. Firstly, the nonlinear Wiener process is used to characterize the degradation law of the equipment. Secondly, the imperfect maintenance model that meets the upper limit of the maintenance number is established based on the nonhomogeneous Poisson process. Then, based on the concept of the first hitting time, the probability density function (PDF) of the RUL is derived. Finally, based on the RUL prediction results, the optimal maintenance decision model for the equipment subject imperfect maintenance is constructed. Through the example verification and cost parameter sensitivity analysis, the proposed method can effectively improve the accuracy of the RUL prediction and the scientific of maintenance decision results, which has engineering application value.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2963765</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4148-0496</orcidid><orcidid>https://orcid.org/0000-0002-4722-5405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.6704-6716
issn 2169-3536
2169-3536
language eng
recordid cdi_webofscience_primary_000524687200006
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Computer Science
Computer Science, Information Systems
Cost analysis
Degradation
Economics
Engineering
Engineering, Electrical & Electronic
imperfect maintenance
Maintenance
Maintenance decision
Maintenance engineering
Mathematical model
nonhomogeneous Poisson process
nonlinear Wiener process
Parameter sensitivity
Predictive models
Probability density function
Probability density functions
Production
remaining useful lifetime prediction
Science & Technology
Sensitivity analysis
Statistical analysis
Technology
Telecommunications
title Optimal Maintenance Decision Based on Remaining Useful Lifetime Prediction for the Equipment Subject to Imperfect Maintenance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Maintenance%20Decision%20Based%20on%20Remaining%20Useful%20Lifetime%20Prediction%20for%20the%20Equipment%20Subject%20to%20Imperfect%20Maintenance&rft.jtitle=IEEE%20access&rft.au=Chen,%20Yunxiang&rft.date=2020&rft.volume=8&rft.spage=6704&rft.epage=6716&rft.pages=6704-6716&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2963765&rft_dat=%3Cproquest_webof%3E2454956771%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454956771&rft_id=info:pmid/&rft_ieee_id=8949355&rft_doaj_id=oai_doaj_org_article_dc0b8ec664eb4720ba920155647acbda&rfr_iscdi=true