Terahertz Quantum Cryptography

A well-known empirical rule for the demand of wireless communication systems is that of Edholm's law of bandwidth. It states that the demand for bandwidth in wireless short-range communications doubles every 18 months. With the growing demand for bandwidth and the decreasing cell size of wirele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2020-03, Vol.38 (3), p.483-495
Hauptverfasser: Ottaviani, Carlo, Woolley, Matthew J., Erementchouk, Misha, Federici, John F., Mazumder, Pinaki, Pirandola, Stefano, Weedbrook, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 3
container_start_page 483
container_title IEEE journal on selected areas in communications
container_volume 38
creator Ottaviani, Carlo
Woolley, Matthew J.
Erementchouk, Misha
Federici, John F.
Mazumder, Pinaki
Pirandola, Stefano
Weedbrook, Christian
description A well-known empirical rule for the demand of wireless communication systems is that of Edholm's law of bandwidth. It states that the demand for bandwidth in wireless short-range communications doubles every 18 months. With the growing demand for bandwidth and the decreasing cell size of wireless systems, terahertz (THz) communication systems are expected to become increasingly important in modern day applications. With this expectation comes the need for protecting users' privacy and security in the best way possible. With that in mind, we show that quantum key distribution can operate in the THz regime and we derive the relevant secret key rates against realistic collective attacks. In the extended THz range (from 0.1 to 50 THz), we find that below 1 THz, the main detrimental factor is thermal noise, while at higher frequencies it is atmospheric absorption. Our results show that high-rate THz quantum cryptography is possible over distances varying from a few meters using direct reconciliation, to about 220m via reverse reconciliation. We also give a specific example of the physical hardware and architecture that could be used to realize our THz quantum key distribution scheme.
doi_str_mv 10.1109/JSAC.2020.2968973
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000523736000008CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8976167</ieee_id><sourcerecordid>2386053058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-e09b76f29734a7b46ce0d2e151680391b32b2ec971338f4f4dee4f60b6065fa93</originalsourceid><addsrcrecordid>eNqNkF1LwzAUQIMoOKc_QAQZ-CidNx9N0sdR_GQg4nwOaXfjOlw70xSZv96UDn31vuTlnNzLIeScwpRSyG6eXmf5lAGDKcukzhQ_ICOapjoBAH1IRqA4T7Si8pictO0agAqh2YhcLtDbFfrwPXnpbB26zST3u21o3r3drnan5MjZjxbP9u-YvN3dLvKHZP58_5jP5knJBQ0JQlYo6VjcK6wqhCwRlgxpSqUGntGCs4JhmSnKuXbCiSWicBIKCTJ1NuNjcjX8u_XNZ4dtMOum83VcaRjXElIOqY4UHajSN23r0ZmtrzbW7wwF02cwfQbTZzD7DNHRg_OFRePassK6xF8v1kkZV1xCPzqvgg1VU-dNV4eoXv9fjfTFQFeIf1S8QVKp-A9SJHd_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386053058</pqid></control><display><type>article</type><title>Terahertz Quantum Cryptography</title><source>IEEE Electronic Library (IEL)</source><creator>Ottaviani, Carlo ; Woolley, Matthew J. ; Erementchouk, Misha ; Federici, John F. ; Mazumder, Pinaki ; Pirandola, Stefano ; Weedbrook, Christian</creator><creatorcontrib>Ottaviani, Carlo ; Woolley, Matthew J. ; Erementchouk, Misha ; Federici, John F. ; Mazumder, Pinaki ; Pirandola, Stefano ; Weedbrook, Christian</creatorcontrib><description>A well-known empirical rule for the demand of wireless communication systems is that of Edholm's law of bandwidth. It states that the demand for bandwidth in wireless short-range communications doubles every 18 months. With the growing demand for bandwidth and the decreasing cell size of wireless systems, terahertz (THz) communication systems are expected to become increasingly important in modern day applications. With this expectation comes the need for protecting users' privacy and security in the best way possible. With that in mind, we show that quantum key distribution can operate in the THz regime and we derive the relevant secret key rates against realistic collective attacks. In the extended THz range (from 0.1 to 50 THz), we find that below 1 THz, the main detrimental factor is thermal noise, while at higher frequencies it is atmospheric absorption. Our results show that high-rate THz quantum cryptography is possible over distances varying from a few meters using direct reconciliation, to about 220m via reverse reconciliation. We also give a specific example of the physical hardware and architecture that could be used to realize our THz quantum key distribution scheme.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2020.2968973</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Bandwidths ; Cryptography ; Demand ; Detectors ; Engineering ; Engineering, Electrical &amp; Electronic ; Frequency conversion ; Optical attenuators ; Protocols ; quantum communication ; Quantum cryptography ; Quantum key distribution (QKD) ; Science &amp; Technology ; Security ; Technology ; Telecommunications ; terahertz (THz) radiation ; Thermal noise ; Wireless communication ; Wireless communication systems ; Wireless communications</subject><ispartof>IEEE journal on selected areas in communications, 2020-03, Vol.38 (3), p.483-495</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>29</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000523736000008</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c341t-e09b76f29734a7b46ce0d2e151680391b32b2ec971338f4f4dee4f60b6065fa93</citedby><cites>FETCH-LOGICAL-c341t-e09b76f29734a7b46ce0d2e151680391b32b2ec971338f4f4dee4f60b6065fa93</cites><orcidid>0000-0002-9353-7004 ; 0000-0002-0032-3999 ; 0000-0001-6165-5615 ; 0000-0003-4722-0038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8976167$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,28253,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8976167$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ottaviani, Carlo</creatorcontrib><creatorcontrib>Woolley, Matthew J.</creatorcontrib><creatorcontrib>Erementchouk, Misha</creatorcontrib><creatorcontrib>Federici, John F.</creatorcontrib><creatorcontrib>Mazumder, Pinaki</creatorcontrib><creatorcontrib>Pirandola, Stefano</creatorcontrib><creatorcontrib>Weedbrook, Christian</creatorcontrib><title>Terahertz Quantum Cryptography</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><addtitle>IEEE J SEL AREA COMM</addtitle><description>A well-known empirical rule for the demand of wireless communication systems is that of Edholm's law of bandwidth. It states that the demand for bandwidth in wireless short-range communications doubles every 18 months. With the growing demand for bandwidth and the decreasing cell size of wireless systems, terahertz (THz) communication systems are expected to become increasingly important in modern day applications. With this expectation comes the need for protecting users' privacy and security in the best way possible. With that in mind, we show that quantum key distribution can operate in the THz regime and we derive the relevant secret key rates against realistic collective attacks. In the extended THz range (from 0.1 to 50 THz), we find that below 1 THz, the main detrimental factor is thermal noise, while at higher frequencies it is atmospheric absorption. Our results show that high-rate THz quantum cryptography is possible over distances varying from a few meters using direct reconciliation, to about 220m via reverse reconciliation. We also give a specific example of the physical hardware and architecture that could be used to realize our THz quantum key distribution scheme.</description><subject>Bandwidths</subject><subject>Cryptography</subject><subject>Demand</subject><subject>Detectors</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Frequency conversion</subject><subject>Optical attenuators</subject><subject>Protocols</subject><subject>quantum communication</subject><subject>Quantum cryptography</subject><subject>Quantum key distribution (QKD)</subject><subject>Science &amp; Technology</subject><subject>Security</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>terahertz (THz) radiation</subject><subject>Thermal noise</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkF1LwzAUQIMoOKc_QAQZ-CidNx9N0sdR_GQg4nwOaXfjOlw70xSZv96UDn31vuTlnNzLIeScwpRSyG6eXmf5lAGDKcukzhQ_ICOapjoBAH1IRqA4T7Si8pictO0agAqh2YhcLtDbFfrwPXnpbB26zST3u21o3r3drnan5MjZjxbP9u-YvN3dLvKHZP58_5jP5knJBQ0JQlYo6VjcK6wqhCwRlgxpSqUGntGCs4JhmSnKuXbCiSWicBIKCTJ1NuNjcjX8u_XNZ4dtMOum83VcaRjXElIOqY4UHajSN23r0ZmtrzbW7wwF02cwfQbTZzD7DNHRg_OFRePassK6xF8v1kkZV1xCPzqvgg1VU-dNV4eoXv9fjfTFQFeIf1S8QVKp-A9SJHd_</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ottaviani, Carlo</creator><creator>Woolley, Matthew J.</creator><creator>Erementchouk, Misha</creator><creator>Federici, John F.</creator><creator>Mazumder, Pinaki</creator><creator>Pirandola, Stefano</creator><creator>Weedbrook, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9353-7004</orcidid><orcidid>https://orcid.org/0000-0002-0032-3999</orcidid><orcidid>https://orcid.org/0000-0001-6165-5615</orcidid><orcidid>https://orcid.org/0000-0003-4722-0038</orcidid></search><sort><creationdate>20200301</creationdate><title>Terahertz Quantum Cryptography</title><author>Ottaviani, Carlo ; Woolley, Matthew J. ; Erementchouk, Misha ; Federici, John F. ; Mazumder, Pinaki ; Pirandola, Stefano ; Weedbrook, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-e09b76f29734a7b46ce0d2e151680391b32b2ec971338f4f4dee4f60b6065fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bandwidths</topic><topic>Cryptography</topic><topic>Demand</topic><topic>Detectors</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Frequency conversion</topic><topic>Optical attenuators</topic><topic>Protocols</topic><topic>quantum communication</topic><topic>Quantum cryptography</topic><topic>Quantum key distribution (QKD)</topic><topic>Science &amp; Technology</topic><topic>Security</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>terahertz (THz) radiation</topic><topic>Thermal noise</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ottaviani, Carlo</creatorcontrib><creatorcontrib>Woolley, Matthew J.</creatorcontrib><creatorcontrib>Erementchouk, Misha</creatorcontrib><creatorcontrib>Federici, John F.</creatorcontrib><creatorcontrib>Mazumder, Pinaki</creatorcontrib><creatorcontrib>Pirandola, Stefano</creatorcontrib><creatorcontrib>Weedbrook, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ottaviani, Carlo</au><au>Woolley, Matthew J.</au><au>Erementchouk, Misha</au><au>Federici, John F.</au><au>Mazumder, Pinaki</au><au>Pirandola, Stefano</au><au>Weedbrook, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terahertz Quantum Cryptography</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><stitle>IEEE J SEL AREA COMM</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>38</volume><issue>3</issue><spage>483</spage><epage>495</epage><pages>483-495</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>A well-known empirical rule for the demand of wireless communication systems is that of Edholm's law of bandwidth. It states that the demand for bandwidth in wireless short-range communications doubles every 18 months. With the growing demand for bandwidth and the decreasing cell size of wireless systems, terahertz (THz) communication systems are expected to become increasingly important in modern day applications. With this expectation comes the need for protecting users' privacy and security in the best way possible. With that in mind, we show that quantum key distribution can operate in the THz regime and we derive the relevant secret key rates against realistic collective attacks. In the extended THz range (from 0.1 to 50 THz), we find that below 1 THz, the main detrimental factor is thermal noise, while at higher frequencies it is atmospheric absorption. Our results show that high-rate THz quantum cryptography is possible over distances varying from a few meters using direct reconciliation, to about 220m via reverse reconciliation. We also give a specific example of the physical hardware and architecture that could be used to realize our THz quantum key distribution scheme.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSAC.2020.2968973</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9353-7004</orcidid><orcidid>https://orcid.org/0000-0002-0032-3999</orcidid><orcidid>https://orcid.org/0000-0001-6165-5615</orcidid><orcidid>https://orcid.org/0000-0003-4722-0038</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2020-03, Vol.38 (3), p.483-495
issn 0733-8716
1558-0008
language eng
recordid cdi_webofscience_primary_000523736000008CitationCount
source IEEE Electronic Library (IEL)
subjects Bandwidths
Cryptography
Demand
Detectors
Engineering
Engineering, Electrical & Electronic
Frequency conversion
Optical attenuators
Protocols
quantum communication
Quantum cryptography
Quantum key distribution (QKD)
Science & Technology
Security
Technology
Telecommunications
terahertz (THz) radiation
Thermal noise
Wireless communication
Wireless communication systems
Wireless communications
title Terahertz Quantum Cryptography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terahertz%20Quantum%20Cryptography&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Ottaviani,%20Carlo&rft.date=2020-03-01&rft.volume=38&rft.issue=3&rft.spage=483&rft.epage=495&rft.pages=483-495&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2020.2968973&rft_dat=%3Cproquest_RIE%3E2386053058%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386053058&rft_id=info:pmid/&rft_ieee_id=8976167&rfr_iscdi=true