Terahertz Quantum Cryptography
A well-known empirical rule for the demand of wireless communication systems is that of Edholm's law of bandwidth. It states that the demand for bandwidth in wireless short-range communications doubles every 18 months. With the growing demand for bandwidth and the decreasing cell size of wirele...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2020-03, Vol.38 (3), p.483-495 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 495 |
---|---|
container_issue | 3 |
container_start_page | 483 |
container_title | IEEE journal on selected areas in communications |
container_volume | 38 |
creator | Ottaviani, Carlo Woolley, Matthew J. Erementchouk, Misha Federici, John F. Mazumder, Pinaki Pirandola, Stefano Weedbrook, Christian |
description | A well-known empirical rule for the demand of wireless communication systems is that of Edholm's law of bandwidth. It states that the demand for bandwidth in wireless short-range communications doubles every 18 months. With the growing demand for bandwidth and the decreasing cell size of wireless systems, terahertz (THz) communication systems are expected to become increasingly important in modern day applications. With this expectation comes the need for protecting users' privacy and security in the best way possible. With that in mind, we show that quantum key distribution can operate in the THz regime and we derive the relevant secret key rates against realistic collective attacks. In the extended THz range (from 0.1 to 50 THz), we find that below 1 THz, the main detrimental factor is thermal noise, while at higher frequencies it is atmospheric absorption. Our results show that high-rate THz quantum cryptography is possible over distances varying from a few meters using direct reconciliation, to about 220m via reverse reconciliation. We also give a specific example of the physical hardware and architecture that could be used to realize our THz quantum key distribution scheme. |
doi_str_mv | 10.1109/JSAC.2020.2968973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000523736000008CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8976167</ieee_id><sourcerecordid>2386053058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-e09b76f29734a7b46ce0d2e151680391b32b2ec971338f4f4dee4f60b6065fa93</originalsourceid><addsrcrecordid>eNqNkF1LwzAUQIMoOKc_QAQZ-CidNx9N0sdR_GQg4nwOaXfjOlw70xSZv96UDn31vuTlnNzLIeScwpRSyG6eXmf5lAGDKcukzhQ_ICOapjoBAH1IRqA4T7Si8pictO0agAqh2YhcLtDbFfrwPXnpbB26zST3u21o3r3drnan5MjZjxbP9u-YvN3dLvKHZP58_5jP5knJBQ0JQlYo6VjcK6wqhCwRlgxpSqUGntGCs4JhmSnKuXbCiSWicBIKCTJ1NuNjcjX8u_XNZ4dtMOum83VcaRjXElIOqY4UHajSN23r0ZmtrzbW7wwF02cwfQbTZzD7DNHRg_OFRePassK6xF8v1kkZV1xCPzqvgg1VU-dNV4eoXv9fjfTFQFeIf1S8QVKp-A9SJHd_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386053058</pqid></control><display><type>article</type><title>Terahertz Quantum Cryptography</title><source>IEEE Electronic Library (IEL)</source><creator>Ottaviani, Carlo ; Woolley, Matthew J. ; Erementchouk, Misha ; Federici, John F. ; Mazumder, Pinaki ; Pirandola, Stefano ; Weedbrook, Christian</creator><creatorcontrib>Ottaviani, Carlo ; Woolley, Matthew J. ; Erementchouk, Misha ; Federici, John F. ; Mazumder, Pinaki ; Pirandola, Stefano ; Weedbrook, Christian</creatorcontrib><description>A well-known empirical rule for the demand of wireless communication systems is that of Edholm's law of bandwidth. It states that the demand for bandwidth in wireless short-range communications doubles every 18 months. With the growing demand for bandwidth and the decreasing cell size of wireless systems, terahertz (THz) communication systems are expected to become increasingly important in modern day applications. With this expectation comes the need for protecting users' privacy and security in the best way possible. With that in mind, we show that quantum key distribution can operate in the THz regime and we derive the relevant secret key rates against realistic collective attacks. In the extended THz range (from 0.1 to 50 THz), we find that below 1 THz, the main detrimental factor is thermal noise, while at higher frequencies it is atmospheric absorption. Our results show that high-rate THz quantum cryptography is possible over distances varying from a few meters using direct reconciliation, to about 220m via reverse reconciliation. We also give a specific example of the physical hardware and architecture that could be used to realize our THz quantum key distribution scheme.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2020.2968973</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Bandwidths ; Cryptography ; Demand ; Detectors ; Engineering ; Engineering, Electrical & Electronic ; Frequency conversion ; Optical attenuators ; Protocols ; quantum communication ; Quantum cryptography ; Quantum key distribution (QKD) ; Science & Technology ; Security ; Technology ; Telecommunications ; terahertz (THz) radiation ; Thermal noise ; Wireless communication ; Wireless communication systems ; Wireless communications</subject><ispartof>IEEE journal on selected areas in communications, 2020-03, Vol.38 (3), p.483-495</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>29</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000523736000008</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c341t-e09b76f29734a7b46ce0d2e151680391b32b2ec971338f4f4dee4f60b6065fa93</citedby><cites>FETCH-LOGICAL-c341t-e09b76f29734a7b46ce0d2e151680391b32b2ec971338f4f4dee4f60b6065fa93</cites><orcidid>0000-0002-9353-7004 ; 0000-0002-0032-3999 ; 0000-0001-6165-5615 ; 0000-0003-4722-0038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8976167$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,28253,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8976167$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ottaviani, Carlo</creatorcontrib><creatorcontrib>Woolley, Matthew J.</creatorcontrib><creatorcontrib>Erementchouk, Misha</creatorcontrib><creatorcontrib>Federici, John F.</creatorcontrib><creatorcontrib>Mazumder, Pinaki</creatorcontrib><creatorcontrib>Pirandola, Stefano</creatorcontrib><creatorcontrib>Weedbrook, Christian</creatorcontrib><title>Terahertz Quantum Cryptography</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><addtitle>IEEE J SEL AREA COMM</addtitle><description>A well-known empirical rule for the demand of wireless communication systems is that of Edholm's law of bandwidth. It states that the demand for bandwidth in wireless short-range communications doubles every 18 months. With the growing demand for bandwidth and the decreasing cell size of wireless systems, terahertz (THz) communication systems are expected to become increasingly important in modern day applications. With this expectation comes the need for protecting users' privacy and security in the best way possible. With that in mind, we show that quantum key distribution can operate in the THz regime and we derive the relevant secret key rates against realistic collective attacks. In the extended THz range (from 0.1 to 50 THz), we find that below 1 THz, the main detrimental factor is thermal noise, while at higher frequencies it is atmospheric absorption. Our results show that high-rate THz quantum cryptography is possible over distances varying from a few meters using direct reconciliation, to about 220m via reverse reconciliation. We also give a specific example of the physical hardware and architecture that could be used to realize our THz quantum key distribution scheme.</description><subject>Bandwidths</subject><subject>Cryptography</subject><subject>Demand</subject><subject>Detectors</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Frequency conversion</subject><subject>Optical attenuators</subject><subject>Protocols</subject><subject>quantum communication</subject><subject>Quantum cryptography</subject><subject>Quantum key distribution (QKD)</subject><subject>Science & Technology</subject><subject>Security</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>terahertz (THz) radiation</subject><subject>Thermal noise</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkF1LwzAUQIMoOKc_QAQZ-CidNx9N0sdR_GQg4nwOaXfjOlw70xSZv96UDn31vuTlnNzLIeScwpRSyG6eXmf5lAGDKcukzhQ_ICOapjoBAH1IRqA4T7Si8pictO0agAqh2YhcLtDbFfrwPXnpbB26zST3u21o3r3drnan5MjZjxbP9u-YvN3dLvKHZP58_5jP5knJBQ0JQlYo6VjcK6wqhCwRlgxpSqUGntGCs4JhmSnKuXbCiSWicBIKCTJ1NuNjcjX8u_XNZ4dtMOum83VcaRjXElIOqY4UHajSN23r0ZmtrzbW7wwF02cwfQbTZzD7DNHRg_OFRePassK6xF8v1kkZV1xCPzqvgg1VU-dNV4eoXv9fjfTFQFeIf1S8QVKp-A9SJHd_</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ottaviani, Carlo</creator><creator>Woolley, Matthew J.</creator><creator>Erementchouk, Misha</creator><creator>Federici, John F.</creator><creator>Mazumder, Pinaki</creator><creator>Pirandola, Stefano</creator><creator>Weedbrook, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9353-7004</orcidid><orcidid>https://orcid.org/0000-0002-0032-3999</orcidid><orcidid>https://orcid.org/0000-0001-6165-5615</orcidid><orcidid>https://orcid.org/0000-0003-4722-0038</orcidid></search><sort><creationdate>20200301</creationdate><title>Terahertz Quantum Cryptography</title><author>Ottaviani, Carlo ; Woolley, Matthew J. ; Erementchouk, Misha ; Federici, John F. ; Mazumder, Pinaki ; Pirandola, Stefano ; Weedbrook, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-e09b76f29734a7b46ce0d2e151680391b32b2ec971338f4f4dee4f60b6065fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bandwidths</topic><topic>Cryptography</topic><topic>Demand</topic><topic>Detectors</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Frequency conversion</topic><topic>Optical attenuators</topic><topic>Protocols</topic><topic>quantum communication</topic><topic>Quantum cryptography</topic><topic>Quantum key distribution (QKD)</topic><topic>Science & Technology</topic><topic>Security</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>terahertz (THz) radiation</topic><topic>Thermal noise</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ottaviani, Carlo</creatorcontrib><creatorcontrib>Woolley, Matthew J.</creatorcontrib><creatorcontrib>Erementchouk, Misha</creatorcontrib><creatorcontrib>Federici, John F.</creatorcontrib><creatorcontrib>Mazumder, Pinaki</creatorcontrib><creatorcontrib>Pirandola, Stefano</creatorcontrib><creatorcontrib>Weedbrook, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ottaviani, Carlo</au><au>Woolley, Matthew J.</au><au>Erementchouk, Misha</au><au>Federici, John F.</au><au>Mazumder, Pinaki</au><au>Pirandola, Stefano</au><au>Weedbrook, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terahertz Quantum Cryptography</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><stitle>IEEE J SEL AREA COMM</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>38</volume><issue>3</issue><spage>483</spage><epage>495</epage><pages>483-495</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>A well-known empirical rule for the demand of wireless communication systems is that of Edholm's law of bandwidth. It states that the demand for bandwidth in wireless short-range communications doubles every 18 months. With the growing demand for bandwidth and the decreasing cell size of wireless systems, terahertz (THz) communication systems are expected to become increasingly important in modern day applications. With this expectation comes the need for protecting users' privacy and security in the best way possible. With that in mind, we show that quantum key distribution can operate in the THz regime and we derive the relevant secret key rates against realistic collective attacks. In the extended THz range (from 0.1 to 50 THz), we find that below 1 THz, the main detrimental factor is thermal noise, while at higher frequencies it is atmospheric absorption. Our results show that high-rate THz quantum cryptography is possible over distances varying from a few meters using direct reconciliation, to about 220m via reverse reconciliation. We also give a specific example of the physical hardware and architecture that could be used to realize our THz quantum key distribution scheme.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSAC.2020.2968973</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9353-7004</orcidid><orcidid>https://orcid.org/0000-0002-0032-3999</orcidid><orcidid>https://orcid.org/0000-0001-6165-5615</orcidid><orcidid>https://orcid.org/0000-0003-4722-0038</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2020-03, Vol.38 (3), p.483-495 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_webofscience_primary_000523736000008CitationCount |
source | IEEE Electronic Library (IEL) |
subjects | Bandwidths Cryptography Demand Detectors Engineering Engineering, Electrical & Electronic Frequency conversion Optical attenuators Protocols quantum communication Quantum cryptography Quantum key distribution (QKD) Science & Technology Security Technology Telecommunications terahertz (THz) radiation Thermal noise Wireless communication Wireless communication systems Wireless communications |
title | Terahertz Quantum Cryptography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terahertz%20Quantum%20Cryptography&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Ottaviani,%20Carlo&rft.date=2020-03-01&rft.volume=38&rft.issue=3&rft.spage=483&rft.epage=495&rft.pages=483-495&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2020.2968973&rft_dat=%3Cproquest_RIE%3E2386053058%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386053058&rft_id=info:pmid/&rft_ieee_id=8976167&rfr_iscdi=true |