Surfactant dynamics: hidden variables controlling fluid flows
Surfactants – molecules and particles that preferentially adsorb to fluid interfaces – play a ubiquitous role in the fluids of industry, of nature and of life. Since most surfactants cannot be seen directly, their behaviour must be inferred from their impact on observed flows, like the buoyant rise...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2020-06, Vol.892, Article 1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 892 |
creator | Manikantan, Harishankar Squires, Todd M. |
description | Surfactants – molecules and particles that preferentially adsorb to fluid interfaces – play a ubiquitous role in the fluids of industry, of nature and of life. Since most surfactants cannot be seen directly, their behaviour must be inferred from their impact on observed flows, like the buoyant rise of a bubble, or the thickness of a coating film. In so doing, however, a difficulty arises: physically distinct surfactant processes can affect measurable flows in qualitatively identical ways, raising the spectre of confusion or even misinterpretation. This Perspective describes, in one coherent piece, both the equilibrium properties and dynamic processes of surfactants, to better enable the fluid mechanics community to understand, interpret and design surfactant/fluid systems. Specifically, we treat the equilibrium thermodynamics of surfactants at interfaces, including surface pressure, isotherms of soluble and insoluble surfactants and surface dilatational moduli (Gibbs and Marangoni). We describe surfactant dynamics in fluid systems, including surfactant transport and interfacial stress boundary conditions, the competition between surface diffusion, advection and adsorption/desorption, Marangoni stresses and flows and surface-excess rheology. We discuss paradigmatic problems from fluid mechanics that are impacted by surfactants, including translating drops and bubbles, surfactant adsorption to clean and oscillating interfaces; capillary wave damping, thin-film dynamics, foam drainage and the dynamics of particles and probes at surfactant-laden interfaces. Finally, we discuss the additional richness and complexity that frequently arise in ‘real’ surfactants, including phase transitions, phase coexistence and polycrystalline phases within surfactant monolayers, and their impact on non-Newtonian surface rheology. |
doi_str_mv | 10.1017/jfm.2020.170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000523654700001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_170</cupid><sourcerecordid>2386166293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-bde59506d5b06edf1398df025aae6bc61e785e477b6e8f3be5345792a41b76583</originalsourceid><addsrcrecordid>eNqNkdtrFDEYxYNY7Lr65rMM-CLUWXOZJDOCQlnUFgo-qM8hl2-2WWaSmsy09L83y67rBR_6kgv55XzncBB6QfCKYCLfbvtxRTEtN4kfoQVpRFdL0fDHaIExpTUhFJ-ipzlvMSYMd_IJOmVMSkFYt0Dvv86p13bSYarcfdCjt_ldde2dg1Dd6uS1GSBXNoYpxWHwYVP1w-xdWeNdfoZOej1keH7Yl-j7p4_f1hf11ZfPl-vzq9pyIqfaOOAdx8JxgwW4vkxuXY8p1xqEsYKAbDk0UhoBbc8McNZw2VHdECMFb9kSfdjr3sxmBGehuNGDukl-1OleRe3V3y_BX6tNvFWy67hksgi8Pgik-GOGPKnRZwvDoAPEOSta3HFCabtDX_2DbuOcQomnKGsFEYJ2rFBv9pRNMecE_dEMwWrXiyq9qF0vqvRS8Jd_BjjCv4oowNkeuAMT-2w9BAtHDGPMKRO8keVUWlyi9uH02k968jGs4xym8nV1MK5Hk7zbwO98_7X-E6RUuOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386166293</pqid></control><display><type>article</type><title>Surfactant dynamics: hidden variables controlling fluid flows</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Cambridge University Press Journals Complete</source><creator>Manikantan, Harishankar ; Squires, Todd M.</creator><creatorcontrib>Manikantan, Harishankar ; Squires, Todd M.</creatorcontrib><description>Surfactants – molecules and particles that preferentially adsorb to fluid interfaces – play a ubiquitous role in the fluids of industry, of nature and of life. Since most surfactants cannot be seen directly, their behaviour must be inferred from their impact on observed flows, like the buoyant rise of a bubble, or the thickness of a coating film. In so doing, however, a difficulty arises: physically distinct surfactant processes can affect measurable flows in qualitatively identical ways, raising the spectre of confusion or even misinterpretation. This Perspective describes, in one coherent piece, both the equilibrium properties and dynamic processes of surfactants, to better enable the fluid mechanics community to understand, interpret and design surfactant/fluid systems. Specifically, we treat the equilibrium thermodynamics of surfactants at interfaces, including surface pressure, isotherms of soluble and insoluble surfactants and surface dilatational moduli (Gibbs and Marangoni). We describe surfactant dynamics in fluid systems, including surfactant transport and interfacial stress boundary conditions, the competition between surface diffusion, advection and adsorption/desorption, Marangoni stresses and flows and surface-excess rheology. We discuss paradigmatic problems from fluid mechanics that are impacted by surfactants, including translating drops and bubbles, surfactant adsorption to clean and oscillating interfaces; capillary wave damping, thin-film dynamics, foam drainage and the dynamics of particles and probes at surfactant-laden interfaces. Finally, we discuss the additional richness and complexity that frequently arise in ‘real’ surfactants, including phase transitions, phase coexistence and polycrystalline phases within surfactant monolayers, and their impact on non-Newtonian surface rheology.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.170</identifier><identifier>PMID: 33776139</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adsorption ; Aquatic reptiles ; Boundary conditions ; Bubbles ; Capillary waves ; Coexistence ; Damping ; Experiments ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Influence ; Interfaces ; Interfacial stresses ; JFM Perspectives ; Mechanics ; Monomolecular films ; Phase transitions ; Physical Sciences ; Physics ; Physics, Fluids & Plasmas ; Pressure ; Rheological properties ; Rheology ; Science & Technology ; Surface chemistry ; Surface diffusion ; Surfactants ; Technology ; Thermodynamic equilibrium ; Thickness ; Thin films ; Velocity ; Wave damping</subject><ispartof>Journal of fluid mechanics, 2020-06, Vol.892, Article 1</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><rights>2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>153</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000523654700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c517t-bde59506d5b06edf1398df025aae6bc61e785e477b6e8f3be5345792a41b76583</citedby><cites>FETCH-LOGICAL-c517t-bde59506d5b06edf1398df025aae6bc61e785e477b6e8f3be5345792a41b76583</cites><orcidid>0000-0001-6609-9275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020001706/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,230,315,782,786,887,27933,27934,28257,55637</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33776139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manikantan, Harishankar</creatorcontrib><creatorcontrib>Squires, Todd M.</creatorcontrib><title>Surfactant dynamics: hidden variables controlling fluid flows</title><title>Journal of fluid mechanics</title><addtitle>J FLUID MECH</addtitle><addtitle>J. Fluid Mech</addtitle><description>Surfactants – molecules and particles that preferentially adsorb to fluid interfaces – play a ubiquitous role in the fluids of industry, of nature and of life. Since most surfactants cannot be seen directly, their behaviour must be inferred from their impact on observed flows, like the buoyant rise of a bubble, or the thickness of a coating film. In so doing, however, a difficulty arises: physically distinct surfactant processes can affect measurable flows in qualitatively identical ways, raising the spectre of confusion or even misinterpretation. This Perspective describes, in one coherent piece, both the equilibrium properties and dynamic processes of surfactants, to better enable the fluid mechanics community to understand, interpret and design surfactant/fluid systems. Specifically, we treat the equilibrium thermodynamics of surfactants at interfaces, including surface pressure, isotherms of soluble and insoluble surfactants and surface dilatational moduli (Gibbs and Marangoni). We describe surfactant dynamics in fluid systems, including surfactant transport and interfacial stress boundary conditions, the competition between surface diffusion, advection and adsorption/desorption, Marangoni stresses and flows and surface-excess rheology. We discuss paradigmatic problems from fluid mechanics that are impacted by surfactants, including translating drops and bubbles, surfactant adsorption to clean and oscillating interfaces; capillary wave damping, thin-film dynamics, foam drainage and the dynamics of particles and probes at surfactant-laden interfaces. Finally, we discuss the additional richness and complexity that frequently arise in ‘real’ surfactants, including phase transitions, phase coexistence and polycrystalline phases within surfactant monolayers, and their impact on non-Newtonian surface rheology.</description><subject>Adsorption</subject><subject>Aquatic reptiles</subject><subject>Boundary conditions</subject><subject>Bubbles</subject><subject>Capillary waves</subject><subject>Coexistence</subject><subject>Damping</subject><subject>Experiments</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Influence</subject><subject>Interfaces</subject><subject>Interfacial stresses</subject><subject>JFM Perspectives</subject><subject>Mechanics</subject><subject>Monomolecular films</subject><subject>Phase transitions</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Fluids & Plasmas</subject><subject>Pressure</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Science & Technology</subject><subject>Surface chemistry</subject><subject>Surface diffusion</subject><subject>Surfactants</subject><subject>Technology</subject><subject>Thermodynamic equilibrium</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Velocity</subject><subject>Wave damping</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkdtrFDEYxYNY7Lr65rMM-CLUWXOZJDOCQlnUFgo-qM8hl2-2WWaSmsy09L83y67rBR_6kgv55XzncBB6QfCKYCLfbvtxRTEtN4kfoQVpRFdL0fDHaIExpTUhFJ-ipzlvMSYMd_IJOmVMSkFYt0Dvv86p13bSYarcfdCjt_ldde2dg1Dd6uS1GSBXNoYpxWHwYVP1w-xdWeNdfoZOej1keH7Yl-j7p4_f1hf11ZfPl-vzq9pyIqfaOOAdx8JxgwW4vkxuXY8p1xqEsYKAbDk0UhoBbc8McNZw2VHdECMFb9kSfdjr3sxmBGehuNGDukl-1OleRe3V3y_BX6tNvFWy67hksgi8Pgik-GOGPKnRZwvDoAPEOSta3HFCabtDX_2DbuOcQomnKGsFEYJ2rFBv9pRNMecE_dEMwWrXiyq9qF0vqvRS8Jd_BjjCv4oowNkeuAMT-2w9BAtHDGPMKRO8keVUWlyi9uH02k968jGs4xym8nV1MK5Hk7zbwO98_7X-E6RUuOg</recordid><startdate>20200610</startdate><enddate>20200610</enddate><creator>Manikantan, Harishankar</creator><creator>Squires, Todd M.</creator><general>Cambridge University Press</general><general>Cambridge Univ Press</general><scope>IKXGN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6609-9275</orcidid></search><sort><creationdate>20200610</creationdate><title>Surfactant dynamics: hidden variables controlling fluid flows</title><author>Manikantan, Harishankar ; Squires, Todd M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-bde59506d5b06edf1398df025aae6bc61e785e477b6e8f3be5345792a41b76583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Aquatic reptiles</topic><topic>Boundary conditions</topic><topic>Bubbles</topic><topic>Capillary waves</topic><topic>Coexistence</topic><topic>Damping</topic><topic>Experiments</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Influence</topic><topic>Interfaces</topic><topic>Interfacial stresses</topic><topic>JFM Perspectives</topic><topic>Mechanics</topic><topic>Monomolecular films</topic><topic>Phase transitions</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Fluids & Plasmas</topic><topic>Pressure</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Science & Technology</topic><topic>Surface chemistry</topic><topic>Surface diffusion</topic><topic>Surfactants</topic><topic>Technology</topic><topic>Thermodynamic equilibrium</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Velocity</topic><topic>Wave damping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manikantan, Harishankar</creatorcontrib><creatorcontrib>Squires, Todd M.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manikantan, Harishankar</au><au>Squires, Todd M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surfactant dynamics: hidden variables controlling fluid flows</atitle><jtitle>Journal of fluid mechanics</jtitle><stitle>J FLUID MECH</stitle><addtitle>J. Fluid Mech</addtitle><date>2020-06-10</date><risdate>2020</risdate><volume>892</volume><artnum>1</artnum><artnum>0022112020001706</artnum><artnum>P1</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Surfactants – molecules and particles that preferentially adsorb to fluid interfaces – play a ubiquitous role in the fluids of industry, of nature and of life. Since most surfactants cannot be seen directly, their behaviour must be inferred from their impact on observed flows, like the buoyant rise of a bubble, or the thickness of a coating film. In so doing, however, a difficulty arises: physically distinct surfactant processes can affect measurable flows in qualitatively identical ways, raising the spectre of confusion or even misinterpretation. This Perspective describes, in one coherent piece, both the equilibrium properties and dynamic processes of surfactants, to better enable the fluid mechanics community to understand, interpret and design surfactant/fluid systems. Specifically, we treat the equilibrium thermodynamics of surfactants at interfaces, including surface pressure, isotherms of soluble and insoluble surfactants and surface dilatational moduli (Gibbs and Marangoni). We describe surfactant dynamics in fluid systems, including surfactant transport and interfacial stress boundary conditions, the competition between surface diffusion, advection and adsorption/desorption, Marangoni stresses and flows and surface-excess rheology. We discuss paradigmatic problems from fluid mechanics that are impacted by surfactants, including translating drops and bubbles, surfactant adsorption to clean and oscillating interfaces; capillary wave damping, thin-film dynamics, foam drainage and the dynamics of particles and probes at surfactant-laden interfaces. Finally, we discuss the additional richness and complexity that frequently arise in ‘real’ surfactants, including phase transitions, phase coexistence and polycrystalline phases within surfactant monolayers, and their impact on non-Newtonian surface rheology.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>33776139</pmid><doi>10.1017/jfm.2020.170</doi><tpages>115</tpages><orcidid>https://orcid.org/0000-0001-6609-9275</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2020-06, Vol.892, Article 1 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_webofscience_primary_000523654700001 |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Cambridge University Press Journals Complete |
subjects | Adsorption Aquatic reptiles Boundary conditions Bubbles Capillary waves Coexistence Damping Experiments Fluid dynamics Fluid flow Fluid mechanics Fluids Influence Interfaces Interfacial stresses JFM Perspectives Mechanics Monomolecular films Phase transitions Physical Sciences Physics Physics, Fluids & Plasmas Pressure Rheological properties Rheology Science & Technology Surface chemistry Surface diffusion Surfactants Technology Thermodynamic equilibrium Thickness Thin films Velocity Wave damping |
title | Surfactant dynamics: hidden variables controlling fluid flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surfactant%20dynamics:%20hidden%20variables%20controlling%20fluid%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Manikantan,%20Harishankar&rft.date=2020-06-10&rft.volume=892&rft.artnum=1&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.170&rft_dat=%3Cproquest_webof%3E2386166293%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386166293&rft_id=info:pmid/33776139&rft_cupid=10_1017_jfm_2020_170&rfr_iscdi=true |