Multifunctional role of reduced graphene oxide binder for high performance supercapacitor with commercial-level mass loading

Effective specific-surface-area (SSA) utilization of active materials and rapid ion/electron transport within electrodes with commercial-level mass loadings (>10 mg cm−2) are critical for the practical applications of supercapacitors (SCs). Herein, we demonstrate such SCs based on porous activate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2020-04, Vol.454, p.227917, Article 227917
Hauptverfasser: Choi, Ji-Hyuk, Kim, Yuna, Kim, Byung-su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 227917
container_title Journal of power sources
container_volume 454
creator Choi, Ji-Hyuk
Kim, Yuna
Kim, Byung-su
description Effective specific-surface-area (SSA) utilization of active materials and rapid ion/electron transport within electrodes with commercial-level mass loadings (>10 mg cm−2) are critical for the practical applications of supercapacitors (SCs). Herein, we demonstrate such SCs based on porous activated carbons (PACs) derived from the inexpensive and abundant biomass and reduced graphene oxide (rGO) as a multifunctional conductive binder. The rGO binder incorporated into PAC-based electrodes markedly boosts the capacitive performance of SCs by forming a three-dimensional interconnected network that leads to fast ion diffusion with easy accessibility as well as larger accessible surface areas of active materials across the entire electrode. The resultant electrodes (12 mg cm−2) exhibit outstanding specific capacitance (324 F g−1 at 0.1 A g−1) and areal capacitance (3.9 F cm−2 at 1.2 mA cm−2), along with excellent cycling stability (capacitance retention of ~98% after 10,000 cycles). This strategy provides a versatile avenue for designing scalable and high-performance SCs based on a rich family of porous carbons and their hybrid composites in a sustainable fashion. [Display omitted] •The role of the rGO binder in supercapacitors with high mass loadings was studied.•The rGO conductive network preserve a high SSA of PACs across the entire electrode.•The PAC-rGO electrodes show a high specific capacitance with high mass loadings.•The PAC-rGO12 exhibits remarkable rate capability and cycling stability.
doi_str_mv 10.1016/j.jpowsour.2020.227917
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000523638100013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775320302202</els_id><sourcerecordid>S0378775320302202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-ea6e5582dbcf3af07d48c7c73bcbbe1d9c19b7dad34cfe69ae429a2c8200fba83</originalsourceid><addsrcrecordid>eNqNkE2P0zAQhi0EEmXhLyDfUYo_mji5gSpYkHbFBc7WZDxuXSVxZCdbkPjxuOqyVzh5_M48I_th7K0UWylk8_60Pc3xnOOatkoosVXKdNI8YxvZGl0pU9fP2UZo01bG1Pole5XzSQghpREb9vt-HZbg1wmXECcYeIoD8eh5IrciOX5IMB9pKtnP4Ij3YXKUuI-JH8PhyGdKpR5hQuJ5LTeEGTAspX8Oy5FjHMcSBhiqgR5o4CPkzIcILkyH1-yFhyHTm8fzhv34_On7_kt19-326_7jXYVaqqUiaKiuW-V69Bq8MG7XokGje-x7kq5D2fXGgdM79NR0QDvVgcJWCeF7aPUNa657McWcE3k7pzBC-mWlsBeH9mT_OrQXh_bqsIDtFTxTH33GQOWfT3CRWCvd6FZedOp9WOAicR_XaSnou_9Hy_SH6zQVDQ-Bkn0kXEiEi3Ux_OutfwAdtKSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multifunctional role of reduced graphene oxide binder for high performance supercapacitor with commercial-level mass loading</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Choi, Ji-Hyuk ; Kim, Yuna ; Kim, Byung-su</creator><creatorcontrib>Choi, Ji-Hyuk ; Kim, Yuna ; Kim, Byung-su</creatorcontrib><description>Effective specific-surface-area (SSA) utilization of active materials and rapid ion/electron transport within electrodes with commercial-level mass loadings (&gt;10 mg cm−2) are critical for the practical applications of supercapacitors (SCs). Herein, we demonstrate such SCs based on porous activated carbons (PACs) derived from the inexpensive and abundant biomass and reduced graphene oxide (rGO) as a multifunctional conductive binder. The rGO binder incorporated into PAC-based electrodes markedly boosts the capacitive performance of SCs by forming a three-dimensional interconnected network that leads to fast ion diffusion with easy accessibility as well as larger accessible surface areas of active materials across the entire electrode. The resultant electrodes (12 mg cm−2) exhibit outstanding specific capacitance (324 F g−1 at 0.1 A g−1) and areal capacitance (3.9 F cm−2 at 1.2 mA cm−2), along with excellent cycling stability (capacitance retention of ~98% after 10,000 cycles). This strategy provides a versatile avenue for designing scalable and high-performance SCs based on a rich family of porous carbons and their hybrid composites in a sustainable fashion. [Display omitted] •The role of the rGO binder in supercapacitors with high mass loadings was studied.•The rGO conductive network preserve a high SSA of PACs across the entire electrode.•The PAC-rGO electrodes show a high specific capacitance with high mass loadings.•The PAC-rGO12 exhibits remarkable rate capability and cycling stability.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2020.227917</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Activated carbon ; Binder ; Chemistry ; Chemistry, Physical ; Electrochemistry ; Energy &amp; Fuels ; High mass loading ; Materials Science ; Materials Science, Multidisciplinary ; Physical Sciences ; Reduced graphene oxide ; Science &amp; Technology ; Supercapacitor ; Technology</subject><ispartof>Journal of power sources, 2020-04, Vol.454, p.227917, Article 227917</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>37</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000523638100013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c312t-ea6e5582dbcf3af07d48c7c73bcbbe1d9c19b7dad34cfe69ae429a2c8200fba83</citedby><cites>FETCH-LOGICAL-c312t-ea6e5582dbcf3af07d48c7c73bcbbe1d9c19b7dad34cfe69ae429a2c8200fba83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2020.227917$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Choi, Ji-Hyuk</creatorcontrib><creatorcontrib>Kim, Yuna</creatorcontrib><creatorcontrib>Kim, Byung-su</creatorcontrib><title>Multifunctional role of reduced graphene oxide binder for high performance supercapacitor with commercial-level mass loading</title><title>Journal of power sources</title><addtitle>J POWER SOURCES</addtitle><description>Effective specific-surface-area (SSA) utilization of active materials and rapid ion/electron transport within electrodes with commercial-level mass loadings (&gt;10 mg cm−2) are critical for the practical applications of supercapacitors (SCs). Herein, we demonstrate such SCs based on porous activated carbons (PACs) derived from the inexpensive and abundant biomass and reduced graphene oxide (rGO) as a multifunctional conductive binder. The rGO binder incorporated into PAC-based electrodes markedly boosts the capacitive performance of SCs by forming a three-dimensional interconnected network that leads to fast ion diffusion with easy accessibility as well as larger accessible surface areas of active materials across the entire electrode. The resultant electrodes (12 mg cm−2) exhibit outstanding specific capacitance (324 F g−1 at 0.1 A g−1) and areal capacitance (3.9 F cm−2 at 1.2 mA cm−2), along with excellent cycling stability (capacitance retention of ~98% after 10,000 cycles). This strategy provides a versatile avenue for designing scalable and high-performance SCs based on a rich family of porous carbons and their hybrid composites in a sustainable fashion. [Display omitted] •The role of the rGO binder in supercapacitors with high mass loadings was studied.•The rGO conductive network preserve a high SSA of PACs across the entire electrode.•The PAC-rGO electrodes show a high specific capacitance with high mass loadings.•The PAC-rGO12 exhibits remarkable rate capability and cycling stability.</description><subject>Activated carbon</subject><subject>Binder</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Electrochemistry</subject><subject>Energy &amp; Fuels</subject><subject>High mass loading</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Physical Sciences</subject><subject>Reduced graphene oxide</subject><subject>Science &amp; Technology</subject><subject>Supercapacitor</subject><subject>Technology</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE2P0zAQhi0EEmXhLyDfUYo_mji5gSpYkHbFBc7WZDxuXSVxZCdbkPjxuOqyVzh5_M48I_th7K0UWylk8_60Pc3xnOOatkoosVXKdNI8YxvZGl0pU9fP2UZo01bG1Pole5XzSQghpREb9vt-HZbg1wmXECcYeIoD8eh5IrciOX5IMB9pKtnP4Ij3YXKUuI-JH8PhyGdKpR5hQuJ5LTeEGTAspX8Oy5FjHMcSBhiqgR5o4CPkzIcILkyH1-yFhyHTm8fzhv34_On7_kt19-326_7jXYVaqqUiaKiuW-V69Bq8MG7XokGje-x7kq5D2fXGgdM79NR0QDvVgcJWCeF7aPUNa657McWcE3k7pzBC-mWlsBeH9mT_OrQXh_bqsIDtFTxTH33GQOWfT3CRWCvd6FZedOp9WOAicR_XaSnou_9Hy_SH6zQVDQ-Bkn0kXEiEi3Ux_OutfwAdtKSQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Choi, Ji-Hyuk</creator><creator>Kim, Yuna</creator><creator>Kim, Byung-su</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Multifunctional role of reduced graphene oxide binder for high performance supercapacitor with commercial-level mass loading</title><author>Choi, Ji-Hyuk ; Kim, Yuna ; Kim, Byung-su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-ea6e5582dbcf3af07d48c7c73bcbbe1d9c19b7dad34cfe69ae429a2c8200fba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activated carbon</topic><topic>Binder</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Electrochemistry</topic><topic>Energy &amp; Fuels</topic><topic>High mass loading</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Physical Sciences</topic><topic>Reduced graphene oxide</topic><topic>Science &amp; Technology</topic><topic>Supercapacitor</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Ji-Hyuk</creatorcontrib><creatorcontrib>Kim, Yuna</creatorcontrib><creatorcontrib>Kim, Byung-su</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Ji-Hyuk</au><au>Kim, Yuna</au><au>Kim, Byung-su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional role of reduced graphene oxide binder for high performance supercapacitor with commercial-level mass loading</atitle><jtitle>Journal of power sources</jtitle><stitle>J POWER SOURCES</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>454</volume><spage>227917</spage><pages>227917-</pages><artnum>227917</artnum><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>Effective specific-surface-area (SSA) utilization of active materials and rapid ion/electron transport within electrodes with commercial-level mass loadings (&gt;10 mg cm−2) are critical for the practical applications of supercapacitors (SCs). Herein, we demonstrate such SCs based on porous activated carbons (PACs) derived from the inexpensive and abundant biomass and reduced graphene oxide (rGO) as a multifunctional conductive binder. The rGO binder incorporated into PAC-based electrodes markedly boosts the capacitive performance of SCs by forming a three-dimensional interconnected network that leads to fast ion diffusion with easy accessibility as well as larger accessible surface areas of active materials across the entire electrode. The resultant electrodes (12 mg cm−2) exhibit outstanding specific capacitance (324 F g−1 at 0.1 A g−1) and areal capacitance (3.9 F cm−2 at 1.2 mA cm−2), along with excellent cycling stability (capacitance retention of ~98% after 10,000 cycles). This strategy provides a versatile avenue for designing scalable and high-performance SCs based on a rich family of porous carbons and their hybrid composites in a sustainable fashion. [Display omitted] •The role of the rGO binder in supercapacitors with high mass loadings was studied.•The rGO conductive network preserve a high SSA of PACs across the entire electrode.•The PAC-rGO electrodes show a high specific capacitance with high mass loadings.•The PAC-rGO12 exhibits remarkable rate capability and cycling stability.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2020.227917</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2020-04, Vol.454, p.227917, Article 227917
issn 0378-7753
1873-2755
language eng
recordid cdi_webofscience_primary_000523638100013
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Activated carbon
Binder
Chemistry
Chemistry, Physical
Electrochemistry
Energy & Fuels
High mass loading
Materials Science
Materials Science, Multidisciplinary
Physical Sciences
Reduced graphene oxide
Science & Technology
Supercapacitor
Technology
title Multifunctional role of reduced graphene oxide binder for high performance supercapacitor with commercial-level mass loading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20role%20of%20reduced%20graphene%20oxide%20binder%20for%20high%20performance%20supercapacitor%20with%20commercial-level%20mass%20loading&rft.jtitle=Journal%20of%20power%20sources&rft.au=Choi,%20Ji-Hyuk&rft.date=2020-04-01&rft.volume=454&rft.spage=227917&rft.pages=227917-&rft.artnum=227917&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2020.227917&rft_dat=%3Celsevier_webof%3ES0378775320302202%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378775320302202&rfr_iscdi=true